Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro. However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/luc2) and Hep3B 2.1-7 tumor bearing mice were established and used for the present study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT, and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/luc2 and Hep3B 2.1-7 tumor bearing mice.
Intra-tracheal instillation of budesonide using surfactant as a vehicle significantly decreased the incidence of bronchopulmonary dysplasia or death in preterm infants. The formularity of surfactant supplemented with budesonide and biophysical and chemical stability of the suspension has not been well reported. The aims are to investigate the biophysical and chemical stability of two surfactant preparations, Survanta and Curosurf, supplemented with budesonide. Biophysical property of the surface tension of Survanta and Survanta/budesonide suspension and of Curosurf and Curosurf/budesonide suspension was conducted by a pulsating bubble surfactometer and by a drop shape tensiometer. Chemical stability of Survanta/budesonide and of Curosurf/budesonide suspensions was tested by high-performance liquid chromatography analysis (HPLC). Pulmonary distribution of Survanta/ 18 F-budesonide suspension was examined by a Nano/PET digital scan in rats. The Marangoni effect of Survanta, Curosurf, and budesonide was tested by digital high speed photography. For Survanta supplemented with budesonide, with a concentration ratio of ≥50, the surface tension-lowering activity was minimally affected. Similarly, the surface tension-lowering activity of Curosurf was not significantly affected by addition of budesonide, if the concentration ratio was ≥160. With these concentration ratios of both suspensions, HPLC analysis revealed no new compounds identified. Curosurf as compared to Survanta exhibited a significantly higher Marangoni effect. We conclude that with current dosage recommended for Survanta and Curosurf, both surfactant/budesonide suspensions are biophysically and chemically stable. Both surfactants can act as an effective vehicle for budesonide delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.