Cigarette smoking is a well-known risk factor of upper digestive diseases. Findings on alcohol's effect on these diseases are inconsistent and with the exception of its association with esophageal cancer, little is known about betel quid chewing. This study investigated the association between use of these three substances and upper digestive diseases. We collected data from 9,275 patients receiving upper endoscopies between April 2008 and December 2013. Polynomial regressions were used to analyze the association between risk factors and diseases of the esophagus, stomach and duodenum. Meta-analysis for use of these substances and esophageal diseases was also performed. Participants who simultaneously consumed cigarettes, alcohol and betel quid had a 17.28-fold risk of esophageal cancer (95% CI = 7.59-39.33), 2.99-fold risk of Barrette's esophagus (95% CI = 2.40-4.39), 1.60-fold risk of grade A-B erosive esophagitis (95% CI = 1.29-2.00), 2.00-fold risk of gastric ulcer (95% CI = 1.52-2.63), 2.12-fold risk of duodenitis (95% CI = 1.55-2.89) and 1.29-fold risk of duodenal ulcer (95% CI = 1.01-1.65). Concurrent consumption of more substances was associated with significantly higher risk of developing these diseases. Meta-analysis also revealed use of the three substances came with a high risk of esophageal diseases. In conclusions, cigarette smoking, alcohol drinking and betel quid chewing were associated with upper digestive tract diseases.
CCT was not associated with refractive error, corneal curvature, anterior chamber depth and axial length. CCT is an independent factor unrelated to other ocular parameters.
The Asian citrus psyllid (Diaphorina citri Kuwayama) is the insect vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the pathogen associated with citrus Huanglongbing (HLB, citrus greening). HLB threatens citrus production worldwide. Suppression or reduction of the insect vector using chemical insecticides has been the primary method to inhibit the spread of citrus greening disease. Accurate structural and functional annotation of the Asian citrus psyllid genome, as well as a clear understanding of the interactions between the insect and CLas, are required for development of new molecular-based HLB control methods. A draft assembly of the D. citri genome has been generated and annotated with automated pipelines. However, knowledge transfer from well-curated reference genomes such as that of Drosophila melanogaster to newly sequenced ones is challenging due to the complexity and diversity of insect genomes. To identify and improve gene models as potential targets for pest control, we manually curated several gene families with a focus on genes that have key functional roles in D. citri biology and CLas interactions. This community effort produced 530 manually curated gene models across developmental, physiological, RNAi regulatory and immunity-related pathways. As previously shown in the pea aphid, RNAi machinery genes putatively involved in the microRNA pathway have been specifically duplicated. A comprehensive transcriptome enabled us to identify a number of gene families that are either missing or misassembled in the draft genome. In order to develop biocuration as a training experience, we included undergraduate and graduate students from multiple institutions, as well as experienced annotators from the insect genomics research community. The resulting gene set (OGS v1.0) combines both automatically predicted and manually curated gene models.
Database URL:
https://citrusgreening.org/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.