BackgroundsA new highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and Saudi Arabia and quickly spread to some European countries since September 2012. Until 15 May 2014, it has infected at least 572 people with a fatality rate of about 30% globally. Studies to understand the virus and to develop antiviral drugs or therapy are necessary and urgent. In the present study, MERS-CoV papain-like protease (PLpro) is expressed, and its structural and functional consequences are elucidated.ResultsCircular dichroism and Tyr/Trp fluorescence analyses indicated that the secondary and tertiary structure of MERS-CoV PLpro is well organized and folded. Analytical ultracentrifugation analyses demonstrated that MERS-CoV PLpro is a monomer in solution. The steady-state kinetic and deubiquitination activity assays indicated that MERS-CoV PLpro exhibits potent deubiquitination activity but lower proteolytic activity, compared with SARS-CoV PLpro. A natural mutation, Leu105, is the major reason for this difference.ConclusionsOverall, MERS-CoV PLpro bound by an endogenous metal ion shows a folded structure and potent proteolytic and deubiquitination activity. These findings provide important insights into the structural and functional properties of coronaviral PLpro family, which is applicable to develop strategies inhibiting PLpro against highly pathogenic coronaviruses.
Li‐ion Batteries
In article number 2200197, Yong Yang and co‐workers report a novel lattice‐coherent LiCoPO4 coating on LiCoO2 (LCO), derived by the in‐situ chemical reaction of Co(OH)2 and LiH2PO4, that can effectively alleviate irreversible structure transition and resist electrolyte corrosion, ensuring a high‐voltage LCO electrode (≥4.6V), and stable operation in portable electronic devices, such as mobile phones, computers, tablets, etc., to meet the high‐energy demand of the coming 5G era.
Pyruvate carboxylase (PC) has important roles in metabolism and is crucial for virulence for some pathogenic bacteria. PC contains biotin carboxylase (BC), carboxyltransferase (CT) and biotin carboxyl carrier protein (BCCP) components. It is a single-chain enzyme in eukaryotes and most bacteria, and functions as a 500 kD homo-tetramer. In contrast, PC is a two-subunit enzyme in a collection of Gram-negative bacteria, with the α subunit containing the BC and the β subunit the CT and BCCP domains, and it is believed that the holoenzyme has α4β4 stoichiometry. We report here the crystal structures of a two-subunit PC from Methylobacillus flagellatus. Surprisingly, our structures reveal an α2β4 stoichiometry, and the overall architecture of the holoenzyme is strikingly different from that of the homo-tetrameric PCs. Biochemical and mutagenesis studies confirm the stoichiometry and other structural observations. Our functional studies in Pseudomonas aeruginosa show that its two-subunit PC is important for colony morphogenesis.
Novozym 234 was the most frequently used enzyme for production of Rhizoctonia solani protoplasts. Since manufacture of this enzyme was discontinued in the late 1990s, a new procedure was developed by testing lytic enzymes from Sigma and by examining factors affecting protoplast formation. The combination of 20 mg/mL Driselase and 10mg/mL lysing enzyme was effective in releasing protoplasts from R. solani. The optimal condition for enzyme treatment of mycelium was incubation at 37 degrees C for 15 min followed by 34 degrees C for 105 min. The amount of protoplasts produced was positively correlated with growth rate and negatively correlated with mycelial density. Under favorable conditions, R. solani mycelia released 1.68 x 10(6) protoplasts/mL that is comparable with that produced with Novozym 234. Among various media tested, the best solid medium for protoplast regeneration was 1% V-8 juice agar, while the best liquid medium was 10% potato dextrose broth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.