BACKGROUND Acute exacerbations adversely affect patients with chronic obstructive pulmonary disease (COPD). Macrolide antibiotics benefit patients with a variety of inflammatory airway diseases. METHODS We performed a randomized trial to determine whether azithromycin decreased the frequency of exacerbations in participants with COPD who had an increased risk of exacerbations but no hearing impairment, resting tachycardia, or apparent risk of prolongation of the corrected QT interval. RESULTS A total of 1577 subjects were screened; 1142 (72%) were randomly assigned to receive azithromycin, at a dose of 250 mg daily (570 participants), or placebo (572 participants) for 1 year in addition to their usual care. The rate of 1-year follow-up was 89% in the azithromycin group and 90% in the placebo group. The median time to the first exacerbation was 266 days (95% confidence interval [CI], 227 to 313) among participants receiving azithromycin, as compared with 174 days (95% CI, 143 to 215) among participants receiving placebo (P<0.001). The frequency of exacerbations was 1.48 exacerbations per patient-year in the azithromycin group, as compared with 1.83 per patient-year in the placebo group (P=0.01), and the hazard ratio for having an acute exacerbation of COPD per patient-year in the azithromycin group was 0.73 (95% CI, 0.63 to 0.84; P<0.001). The scores on the St. George’s Respiratory Questionnaire (on a scale of 0 to 100, with lower scores indicating better functioning) improved more in the azithromycin group than in the placebo group (a mean [±SD] decrease of 2.8±12.8 vs. 0.6±11.4, P=0.004); the percentage of participants with more than the minimal clinically important difference of −4 units was 43% in the azithromycin group, as compared with 36% in the placebo group (P=0.03). Hearing decrements were more common in the azithromycin group than in the placebo group (25% vs. 20%, P=0.04). CONCLUSIONS Among selected subjects with COPD, azithromycin taken daily for 1 year, when added to usual treatment, decreased the frequency of exacerbations and improved quality of life but caused hearing decrements in a small percentage of subjects. Although this intervention could change microbial resistance patterns, the effect of this change is not known. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00325897.)
Significant heterogeneity of clinical presentation and disease progression exists within chronic obstructive pulmonary disease (COPD). Although FEV(1) inadequately describes this heterogeneity, a clear alternative has not emerged. The goal of phenotyping is to identify patient groups with unique prognostic or therapeutic characteristics, but significant variation and confusion surrounds use of the term "phenotype" in COPD. Phenotype classically refers to any observable characteristic of an organism, and up until now, multiple disease characteristics have been termed COPD phenotypes. We, however, propose the following variation on this definition: "a single or combination of disease attributes that describe differences between individuals with COPD as they relate to clinically meaningful outcomes (symptoms, exacerbations, response to therapy, rate of disease progression, or death)." This more focused definition allows for classification of patients into distinct prognostic and therapeutic subgroups for both clinical and research purposes. Ideally, individuals sharing a unique phenotype would also ultimately be determined to have a similar underlying biologic or physiologic mechanism(s) to guide the development of therapy where possible. It follows that any proposed phenotype, whether defined by symptoms, radiography, physiology, or cellular or molecular fingerprint will require an iterative validation process in which "candidate" phenotypes are identified before their relevance to clinical outcome is determined. Although this schema represents an ideal construct, we acknowledge any phenotype may be etiologically heterogeneous and that any one individual may manifest multiple phenotypes. We have much yet to learn, but establishing a common language for future research will facilitate our understanding and management of the complexity implicit to this disease.
Summary Background Idiopathic pulmonary fibrosis (IPF) is a devastating disease that probably involves several genetic loci. Several rare genetic variants and one common single nucleotide polymorphism (SNP) of MUC5B have been associated with the disease. Our aim was to identify additional common variants associated with susceptibility and ultimately mortality in IPF. Methods First, we did a three-stage genome-wide association study (GWAS): stage one was a discovery GWAS; and stages two and three were independent case-control studies. DNA samples from European-American patients with IPF meeting standard criteria were obtained from several US centres for each stage. Data for European-American control individuals for stage one were gathered from the database of genotypes and phenotypes; additional control individuals were recruited at the University of Pittsburgh to increase the number. For controls in stages two and three, we gathered data for additional sex-matched European-American control individuals who had been recruited in another study. DNA samples from patients and from control individuals were genotyped to identify SNPs associated with IPF. SNPs identified in stage one were carried forward to stage two, and those that achieved genome-wide significance (p<5 × 10−8) in a meta-analysis were carried forward to stage three. Three case series with follow-up data were selected from stages one and two of the GWAS using samples with follow-up data. Mortality analyses were done in these case series to assess the SNPs associated with IPF that had achieved genome-wide significance in the meta-analysis of stages one and two. Finally, we obtained gene-expression profiling data for lungs of patients with IPF from the Lung Genomics Research Consortium and analysed correlation with SNP genotypes. Findings In stage one of the GWAS (542 patients with IPF, 542 control individuals matched one-by-one to cases by genetic ancestry estimates), we identified 20 loci. Six SNPs reached genome-wide significance in stage two (544 patients, 687 control individuals): three TOLLIP SNPs (rs111521887, rs5743894, rs5743890) and one MUC5B SNP (rs35705950) at 11p15.5; one MDGA2 SNP (rs7144383) at 14q21.3; and one SPPL2C SNP (rs17690703) at 17q21.31. Stage three (324 patients, 702 control individuals) confirmed the associations for all these SNPs, except for rs7144383. Linkage disequilibrium between the MUC5B SNP (rs35705950) and TOLLIP SNPs (rs111521887 [r2=0.07], rs5743894 [r2=0.16], and rs5743890 [r2=0.01]) was low. 683 patients from the GWAS were included in the mortality analysis. Individuals who developed IPF despite having the protective TOLLIP minor allele of rs5743890 carried an increased mortality risk (meta-analysis with fixed-effect model: hazard ratio 1.72 [95% CI 1.24–2.38]; p=0.0012). TOLLIP expression was decreased by 20% in individuals carrying the minor allele of rs5743890 (p=0.097), 40% in those with the minor allele of rs111521887 (p=3.0 × 10−4), and 50% in those with the minor allele of rs5743894 (p=2.93 × 10−5) compa...
BACKGROUND Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with accelerated loss of lung function and death. Identification of patients at risk for these events, particularly those requiring hospitalization, is of major importance. Severe pulmonary hypertension is an important complication of advanced COPD and predicts acute exacerbations, though pulmonary vascular abnormalities also occur early in the course of the disease. We hypothesized that a computed tomographic (CT) metric of pulmonary vascular disease (pulmonary artery enlargement, as determined by a ratio of the diameter of the pulmonary artery to the diameter of the aorta [PA:A ratio] of >1) would be associated with severe COPD exacerbations. METHODS We conducted a multicenter, observational trial that enrolled current and former smokers with COPD. We determined the association between a PA:A ratio of more than 1 and a history at enrollment of severe exacerbations requiring hospitalization and then examined the usefulness of the ratio as a predictor of these events in a longitudinal follow-up of this cohort, as well as in an external validation cohort. We used logistic-regression and zero-inflated negative binomial regression analyses and adjusted for known risk factors for exacerbation. RESULTS Multivariate logistic-regression analysis showed a significant association between a PA:A ratio of more than 1 and a history of severe exacerbations at the time of enrollment in the trial (odds ratio, 4.78; 95% confidence interval [CI], 3.43 to 6.65; P<0.001). A PA:A ratio of more than 1 was also independently associated with an increased risk of future severe exacerbations in both the trial cohort (odds ratio, 3.44; 95% CI, 2.78 to 4.25; P<0.001) and the external validation cohort (odds ratio, 2.80; 95% CI, 2.11 to 3.71; P<0.001). In both cohorts, among all the variables analyzed, a PA:A ratio of more than 1 had the strongest association with severe exacerbations. CONCLUSIONS Pulmonary artery enlargement (a PA:A ratio of >1), as detected by CT, was associated with severe exacerbations of COPD. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov numbers, NCT00608764 and NCT00292552.)
Background The lung microbiome’s contribution to IPF pathogenesisis unknown. Using COMET-IPF (Correlating Outcomes with biochemical Markers to Estimate Time-progression in Idiopathic Pulmonary Fibrosis), the goal of this study was to determine whether unique microbial signatures would associate with disease progression. Methods IPF subjects within four years of diagnosis aged 35–80 were eligible for inclusion. Subjects were followed for up to a maximum of 80 weeks. This completed observational study is registered with ClinicalTrials.gov, number NCT01071707. Progression-free survival was defined as death, acute exacerbation, lung transplant, or decline in FVC of 10% or DLCO of 15%.DNA was isolated from 55 bronchoscopic alveolar lavage (BAL) samples. 454 pyrosequencing was used to assign operational taxonomic units (OTUs) based on a 3% sequence divergence. Adjusted Cox models identified OTUs significantly associated with progression-free survival at a p<0·10 level. These OTUs were then used in principal components (PC) analysis. The association between PCs and microbes with high factor loadings from the PC analysis and progression-free survival were examined via Cox regression analyses. Findings Mean FVC was 70·1% and mean DLCO 42·3 %predicted. Significant associations with disease progression were noted with increased % relative abundance of two OTUs identified by PC analysis, a Streptococcus OTU. (p<0·0009) and a Staphylococcus OTU(p=0·01). Strength of associations using PCs versus two OTUs alone was similar. Threshold analysis helped define a cut point for % relative abundance for each OTU associated with progression-free survival, >3·9% for the Streptococcus OTU, HR 10·19 (95% CI 2·94, 35·35; p=0·0002) and >1·8% for the Staphylococcus OTU, HR 5·06 (1·71, 14·93; p=0·003). Interpretation These preliminary data suggest IPF disease progression is associated with presence of specific members within the Staphylococcus and Streptococcus genera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.