In this paper, the effectiveness of three different operating strategies applied to the Fuzzy ARTMAP (FAM) neural network in pattern classification tasks is analyzed and compared. Three types of FAM, namely average FAM, voting FAM, and ordered FAM, are formed for experimentation. In average FAM, a pool of the FAM networks is trained using random sequences of input patterns, and the performance metrics from multiple networks are averaged. In voting FAM, predictions from a number of FAM networks are combined using the majority-voting scheme to reach a final output. In ordered FAM, a pre-processing procedure known as the ordering algorithm is employed to identify a fixed sequence of input patterns for training the FAM network. Three medical data sets are employed to evaluate the performances of these three types of FAM. The results are analyzed and compared with those from other learning systems. Bootstrapping has also been used to analyze and quantify the results statistically. Int. J. Comp. Intel. Appl. 2003.03:23-43. Downloaded from www.worldscientific.com by NANYANG TECHNOLOGICAL UNIVERSITY on 08/24/15. For personal use only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.