Background Chemo-resistance is one of the major challenges in the therapy of small cell lung cancer (SCLC). Multiple mechanisms are thought to be involved in chemo-resistance during SCLC treatment, but unfortunately, these mechanisms have not been well elucidated. Herein, we investigated the role of miRNA in the resistance of SCLC cells to doxorubicin (Dox). Methods MiRNA microarray analysis revealed that several miRNAs, including miR-7-5p, were specifically decreased in Dox-resistant SCLC cells (H69AR) compared to parental cells (H69). The expression level of miR-7-5p was confirmed by qRT-PCR in Dox-resistant cells (H69AR and H446AR cells) and their parental cells. Bioinformatic analysis indicated that poly ADP-ribose polymerase 1 (PARP1) is a direct target of miR-7-5p. The binding sites of miR-7-5p in the PARP1 3′ UTR were verified by luciferase reporter and Western blot assays. To investigate the role of miR-7-5p in the chemo-resistance of SCLC cells to doxorubicin, mimic or inhibitor of miR-7-5p was transfected into SCLC cells, and the effect of miR-7-5p on homologous recombination (HR) repair was analyzed by HR reporter assays. Furthermore, the expression of HR repair factors (Rad51 and BRCA1) induced by doxorubicin was detected by Western blot and immunofluorescent staining in H446AR cells transfected with miR-7-5p mimic. Results The expression level of miR-7-5p was remarkably reduced ( -fold) in Dox-resistant SCLC cells (H69AR and H446AR cells) compared with that in parental cells (H69 and H446 cells). Poly ADP-ribose polymerase 1 (PARP1) is a direct target of miR-7-5p, and PARP1 expression was downregulated by miR-7-5p. MiR-7-5p impeded Dox-induced HR repair by inhibiting the expression of HR repair factors (Rad51 and BRCA1) that resulted in resensitizing SCLC cells to doxorubicin. Conclusions Our findings provide evidence that miR-7-5p targets PARP1 to exert its suppressive effects on HR repair, indicating that the alteration of the expression of miR-7-5p may be a promising strategy for overcoming chemo-resistance in SCLC therapy. Electronic supplementary material The online version of this article (10.1186/s12885-019-5798-7) contains supplementary material, which is available to authorized users.
The successful generation of T cell-mediated immunity for the treatment of cancer has been a major focal point of research. One of the critical strategies of cancer immunotherapy is to efficiently activate antigen-specific CD8 T cells in the immunosuppressive tumor environment. Here, we used transgenic OT-I/CD45.2/Rag −/− mice as a source of effector CD8 T cells to determine whether irradiation combined with adoptive T cell transfer therapy could improve T cell proliferation and effector function in murine tumor models. Local irradiation combined with adoptive T cell therapy showed a synergistic effect on tumor growth inhibition in mice. Mechanistically, irradiation increased the release of tumor-associated antigens, which facilitated cross-presentation of tumor-associated antigens by dendritic cells and the priming of antigen-specific T lymphocytes. Additionally, irradiation enhanced the homing of the antigen-specific T cells to tumor tissues via the increased release of CCL5, CXCL9, and CXCL11 from tumor cells. Moreover, irradiation enhanced the proliferation and effector function of both adoptively transferred T cells and endogenous antigen-specific T cells. Our findings provide evidence to support that local irradiation enhanced the therapeutic efficacy of adoptive T cell therapy for cancer, indicating that the combination of radiotherapy and adoptive T cell therapy may be a promising strategy for tumor treatment.
B7 homolog 4 (B7H4) is considered a negative regulator of immune responses, but the immunoregulatory role of B7H4 in the tumor microenvironment is not clear. Here, we assessed B7H4 expression cell types in human breast cancer tissues and addressed its potential mechanisms in the CD8 T cell immune response. The results from flow cytometry and immunohistochemistry demonstrated that B7H4 was highly expressed in 26 out of 30 (86.7%) breast invasive ductal carcinomas, and B7H4 surface expression on tumor cells was inversely correlated with CD8 T lymphocytes infiltration (p < 0.0001). In vivo, B7H4-overexpressing tumor cells showed enhanced tumor growth in immunocompetent mice with impaired CD8 T cell infiltration of the tumor. Further investigation showed that activation and expansion of CD8 T cells within the lymph nodes were suppressed in B7H4-overexpessing tumor-bearing mice. An in vitro killing assay showed that the cytotoxicity of CD8 T cells was inhibited in B7H4-overexpressing tumor cells. These findings suggest that B7H4 in tumor cells is a negative regulator of CD8 T cell activation, expansion and cytotoxicity, indicating that tumor cell-associated B7H4 might be a target for T cell-based cancer immunotherapy. Keywords B7 homolog 4 • Tumor microenvironment • T cell • Immune suppression • Adoptive transfer Abbreviations B7H4 B7 homolog 4 CFSE Carboxyfluorescein diacetate succinimidyl ester CTL Cytotoxic T lymphocyte FCM Flow cytometry IHC Immunohistochemistry IDC Invasive ductal carcinomas PBMC Peripheral blood mononuclear cell TCR T cell receptor TAM Tumor associated macrophage TIL Tumor infiltrating lymphocyte * Qiuyu Zhang
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.