Schisandrin B (Sch B) is an active ingredient of the fruit of Schisandra chinensis. It has many therapeutic effects arising from its tonic, sedative, antitussive and antiaging activities and is also used in the treatment of viral and chemical hepatitis. The aim of this study was to investigate the protective effects of Sch B on cyclosporine A (CsA)-induced nephrotoxicity in mice and HK-2 cells (a human proximal tubular epithelial cell line). After gavage with Sch B (20 mg/kg) or olive oil (vehicle), mice received CsA (30 mg/kg) by subcutaneous injection once daily for four weeks. Renal function, histopathology, and tissue glutathione (GSH) and malondialdehyde (MDA) levels were evaluated after the last treatment. The effects of Sch B on CsA-induced oxidative damage in HK-2 cells were investigated by measuring cell viability, the release of lactate dehydrogenase (LDH), the level of reactive oxygen species (ROS), and the cellular GSH and ATP concentrations. Cellular apoptosis was assessed by flow cytometry. Treatment with Sch B in CsA-treated mice significantly suppressed the elevation of blood urea nitrogen (BUN) and serum creatinine levels and attenuated the histopathological changes. Additionally, Sch B also decreased renal MDA levels and increased GSH levels in CsA-treated mice. Using an in vitro model, Sch B (2.5, 5 and 10 μM) significantly increased the cell viability and reduced LDH release and apoptosis induced by CsA (10 μM) in HK-2 cells. Furthermore, Sch B increased the intracellular GSH and ATP levels and attenuated CsA-induced ROS generation. In conclusion, Sch B appears to protect against CsA-induced nephrotoxicity by decreasing oxidative stress and cell death.
In the past decade, β-elemene played an important role in enhancing the effects of many anticancer drugs and was widely used in the treatment of different kinds of malignancies and in reducing the side effects of chemotherapy. Further study showed that it is also a promising anti-lung cancer drug. However, the clinical application of β-elemene was limited by its hydrophobic property, poor stability, and low bioavailability. With the development of new excipients and novel technologies, plenty of novel formulations of β-elemene have improved dramatically, which provide a positive perspective in terms of clinical application for β-elemene. Liposome as a drug delivery system shows great advantages over traditional formulations for β-elemene. In this paper, we summarize the advanced progress being made in anti-lung cancer activity and the new liposomes delivery systems of β-elemene. This advancement is expected to improve the level of pharmacy research and provide a stronger scientific foundation for further study on β-elemene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.