Beginning with three partial cDNA clones of the RNA genome of human hepatitis delta virus (HDV), we assembled the complete 1,679-base sequence on a single molecule and then inserted a trimer of this into plasmid pSVL, a simian virus 40-based eucaryotic expression vector. This construct was used to transfect both monkey kidney (COS7) and human hepatocellular carcinoma (HuH7) cell lines. In this way we obtained replication of the HDV RNA genome and the appearance, in the nucleoli, of the delta antigen, the only known virus-coded protein. This proved both that the HDV genome could replicate in nonliver as well as liver cells and that there was no requirement for the presence of hepatitis B virus sequences or proteins. When the pSVL construct was made with a dimer of an HDV sequence with a 2-base-pair deletion in the open reading frame, genome replication was reduced at least 40-fold. However, when we cotransfected with a plasmid that expressed the correct delta antigen, the mutated dimer achieved a level of genome replication comparable to that of the nonmutated sequence. We thus conclude that the delta antigen can act in trans and is essential for replication of the HDV genome.
The structure and replication of the single-stranded circular RNA genome of hepatitis delta virus (HDV) are unique relative to those of known animal viruses, and yet there are real similarities between HDV and certain infectious RNAs of plants. Therefore, since some of the latter RNAs have been shown to undergo in vitro site-specific cleavage and even ligation, we tested the hypothesis that similar events might also occur for HDV RNA. In partial confirmation of this hypothesis, we found that in vitro the RNA complementary to the HDV genome, the antigenomic RNA, could undergo a self-cleavage that was not only more than 90% efficient but also occurred only at a single location. This cleavage was found to produce junction fragments consistent with a 5'-hydroxyl and a cyclic 2',3'-monophosphate. Since the observed cleavage was both site-specific and occurred only once per genome length, we propose that the site may be relevant to the normal intracellular replication of the HDV genome. Because the site is located almost adjacent to the 3' end of the delta antigen-coding region, the only known functional open reading frame of HDV, we suggest that the cleavage may have a role not only in genome replication but also in RNA processing, helping to produce a functional mRNA for the translation of delta antigen.
Recently we reported that in vitro RNA transcripts complementary to the genome of hepatitis delta virus (HDV) contain a unique site at which self-cleavage can occur. Subsequent studies showed that a similar self-cleavage site was present on in vitro RNA transcripts of genomic HDV RNA. The same self-cleavage reactions were also found to occur on HDV RNAs from the livers of infected chimpanzees. Using the in vitro RNA it was also possible to determine that the minimum length of contiguous sequence needed for self-cleavage of genomic RNA was 30 bases 5' and 74 bases 3' of the cleavage site. This sequence was not compatible with the "hammerhead" structure hypothesized to be important in the self-cleavage reactions of other RNAs.
cDNA prepared from the single-stranded circular RNA genome of hepatitis delta virus was cloned in lambda gt11 by using RNA from the liver of an infected woodchuck. From the sequence of overlapping clones, we assembled the full sequence of 1,679 nucleotides. The sequence indicated an exceptional ability for intramolecular base pairing, yielding a rod structure with at least 70% of the bases paired and a predicted free energy of -805 kcal (-3,368 kJ)/mol. Three of the lambda clones contained sequences that were not only expressed as fusion proteins with beta-galactosidase but were recognized by human hepatitis delta virus-specific antibody. These clones were sequenced so as to establish the reading frame of the delta antigen on the antigenomic strand. The fusion protein produced by one clone was purified by immunoaffinity chromatography and then was used to raise rabbit antibodies specific for the delta antigen.
A new volumetric model-based 2D to 3D registration method has been developed for measuring 3D in vivo kinematics of natural knee joints with single-plane fluoroscopy. With the equipment used in the current study, the accuracy of the WEMS method is considered acceptable for the measurement of the 3D kinematics of the natural knee in clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.