The Qehan Lake Basin is located in the north of the Otindag Sandy Land, where the fragile eco-environment is sensitive to climate change and human activity. We analyzed land cover change and the concomitant processes of ecological change based on multi-spectral scanning (MSS), thematic mapper (TM), and enhanced TM (ETM+) images. The results showed that from 1977 to 2000, the area of dune sand increased significantly by 840.2 km, while the area of high cover grassland (HCGL), medium cover grassland (MCGL), and low cover grassland (LCGL) reduced by 140.6, 207.3, and 463.3 km, respectively. Additionally, the area of wetland decreased by 112.9 km. During the period of 1977 to 2000, the land cover condition index (LCCI) reached a low of 27.7, which indicated serious eco-environmental challenges in the Qehan Lake watershed. However, the process of desertification was reversed, and vegetation cover was gradually restored after 2000. From 2000 to 2013, the area of LCGL increased by 369.2 km (13.4%), while the area of dune sand decreased by 560.1 km (29.4%). The LCCI improved to reach 29.18 in 2013, demonstrating a significant eco-environmental improvement. Although climate change, human activity, and ecological policies have together determined the scope and extent of desertification in the watershed, the most fundamental factor in the restoration of vegetation was precipitation.
The Qehan Lake Basin (QLB) and its system of lakes are located in a marginal monsoon zone and are extremely sensitive to global climate change. In this paper, using aerial photographs from different periods, in addition to MSS, TM, and ETM images, and combining these with regional topographic maps, we analyze lake area changes from 1958 to 2010 and the relation between Qehan Lake (QL) and climate variability. Our results indicate that there was a relatively high lake level in 1959, when the area and volume of the lake were 118.9 km2 and 151.9 × 106 m3, respectively, but this level was subject to a shrinking trend until 2010, when the lake area was only 28.1 km2, and the water volume was 41.1 × 106 m3. West Qehan Lake (WQL) has experienced severe water shrinkage and lake level fluctuation. In 1958, WQL was 80.2 km2 in area and 124.1 × 106 m3 in volume. However, due to a rapid decrease in precipitation and increases in both temperature and evaporation, it began to dry up in 2002. The WQL Water area decreased by 1.82 km2/a, and the lake level declined by 7 m during 1958–2002, so it became an ephemeral lake.
Dust storms are a type of disastrous weather phenomenon linked to strong turbulent wind systems that blow dust particles into the air, and these storms can reduce visibility to 1 km or less (China Central Meteorological Bureau [CCMB], 1979). Severe dust storm weather can not only lead to building collapses, the destruction of vegetation, and human and animal casualties (
The phenological parameters estimated from different data may vary, especially in response to climatic factors. Therefore, we estimated the start of the growing season (SOS) and the end of the growing season (EOS) based on sunlight-induced chlorophyll fluorescence (SIF), the normalized difference vegetation index (NDVI) and the near-infrared reflectance of vegetation (NIRv). The SIF, NDVI and NIRv breakpoints were detected, and the trends and change-points of phenological parameters based on these data were analyzed. The correlations between the phenological parameters and snow-related factors, precipitation, temperature, soil moisture and population density were also analyzed. The results showed that SIF and NIRv could identify breakpoints early. SIF could estimate the latest SOS and the earliest EOS. NDVI could estimate the earliest SOS and the latest EOS. The change-points of SOSSIF were mostly concentrated from 2001 to 2003, and those of SOSNDVI and SOSNIRv occurred later. The change-points of EOSSIF and EOSNIRv were mostly concentrated from 2001 to 2007, and those of EOSSIF occurred later. Differently from the weak correlation with SOSSIF, SOSNDVI and SOSNIRv were significantly correlated with snow-related factors. The correlation between the meteorological factors in the summer and autumn and EOSSIF was the most significant. The population density showed the highest degree of interpretation for SOSNIRv and EOSNDVI. The results reveal the differences and potentials of different remote-sensing parameters in estimating phenological indicators, which is helpful for better understanding the dynamic changes in phenology and the response to changes in various influencing factors.
Evapotranspiration (ET) plays an important role in the study of regional long-term water cycles. The water cycle in Mongolia has been seriously affected by global warming and the intensification of human activities. A significant relationship exists between climate factors and ET. In this paper, the temporal and spatial fluctuations and stability of ET in Mongolia from 2001 to 2020 were studied by using MOD16A2 ET, MOD13A2 NDVI and the climate data of ERA5-Land. ET trends were analysed by using the Breaks for Additive Season and Trend (BFAST) software package, Theil–Sen median trend analysis, Mann–Kendall method and Hurst index. The correlations between ET and temperature (Tem), precipitation (Pre), net solar radiation (Nsr), soil moisture (Swl) and human activities were determined by partial correlation analysis and a geographic detector. In the past 20 years, ET increased significantly in 49.4% of Mongolia, and NDVI also showed a significant increasing trend. BFAST detected two mutation years. ET decreased rapidly from 2006 to 2007 and increased rapidly from 2015 to 2016. In addition to winter, the meteorological factor that had a significant positive impact on ET in the east and west was Pre, whereas the impact of Tem was more obvious in central Mongolia. In winter, Tem had a great impact on ET. In the vegetation growing season, the joint action of NDVI and Pre greatly positively contributed to ET. The geographical detector showed that the influence of annual human factors on ET was weakened by changes in NDVI and Pre. In the growing season, Tem and Nsr increased nonlinearly to ET, and other natural and human factors showed bivariate enhancement. These results will help to understand the responses of ET changes to natural factors and human activities in Mongolia and provide data support for future research on ET and the water cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.