Highlights d A comprehensive degrader molecule (PROTAC) library for KRAS G12C is described d Lead compound degrades GFP-KRAS G12C in a CRBNdependent manner d Challenges and solutions for achieving endogenous KRAS G12C degradation are discussed
Rates of autophagy, the mechanism responsible for lysosomal clearance of cellular components, decrease with age. We have previously described an age-related decline in chaperone-mediated autophagy (CMA), a selective form of autophagy, by which particular cytosolic proteins are delivered to lysosomes after binding to the lysosomeassociated membrane protein type 2A (LAMP-2A), a receptor for this pathway. Rates of CMA decrease with age because of a decrease in the levels of LAMP-2A. In this work we have investigated the reasons for the reduced levels of LAMP-2A with age. While transcriptional rates of LAMP-2A remain unchanged with age, the dynamics and stability of the receptor in the lysosomal compartment are altered. The mobilization of the lysosomal lumenal LAMP-2A to the membrane when CMA is activated is altered in lysosomes from old animals, leading to the presence of an unstable pool of lumenal LAMP-2A. By contrast, the regulated cleavage of LAMP-2A at the lysosomal membrane is reduced owing to altered association of the receptor and the protease responsible for its cleavage to particular membrane microdomain regions. We conclude that age-related changes at the lysosomal membrane are responsible for the altered turnover of the CMA receptor in old organisms and the consequent decline in this pathway.
The gut microbiome participates in numerous physiologic functions and communicates intimately with the host immune system. Antimicrobial peptides are critical components of intestinal innate immunity. We report a prominent role for antimicrobials secreted by pancreatic acinari in shaping the gut microbiome that is essential for intestinal innate immunity, barrier function, and survival. Deletion of the Ca2+ channel Orai1 in pancreatic acini of adult mice resulted in 60–70% mortality within three weeks. Despite robust activation of the intestinal innate immune response, mice lacking acinar Orai1 exhibited intestinal bacterial outgrowth and dysbiosis, ultimately causing systemic translocation, inflammation, and death. While digestive enzyme supplementation was ineffective, treatments constraining bacterial outgrowth (purified liquid diet, broad-spectrum antibiotics), rescued survival, feeding, and weight gain. Pancreatic levels of cathelicidin-related antimicrobial peptide (CRAMP) were reduced, and supplement of synthetic CRAMP prevented intestinal disease. These findings reveal a critical role for antimicrobial pancreatic secretion in gut innate immunity.
High-grade serous ovarian cancer is characterized by extensive copy number alterations, among which the amplification of MYC oncogene occurs in nearly half of tumors. We demonstrate that ovarian cancer cells highly depend on MYC for maintaining their oncogenic growth, indicating MYC as a therapeutic target for this difficult-to-treat malignancy. However, targeting MYC directly has proven difficult. We screen small molecules targeting transcriptional and epigenetic regulation, and find that THZ1 - a chemical inhibiting CDK7, CDK12, and CDK13 - markedly downregulates MYC. Notably, abolishing MYC expression cannot be achieved by targeting CDK7 alone, but requires the combined inhibition of CDK7, CDK12, and CDK13. In 11 patient-derived xenografts models derived from heavily pre-treated ovarian cancer patients, administration of THZ1 induces significant tumor growth inhibition with concurrent abrogation of MYC expression. Our study indicates that targeting these transcriptional CDKs with agents such as THZ1 may be an effective approach for MYC-dependent ovarian malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.