Acidovorax citrulli causes bacterial fruit blotch, a disease that poses a global threat to watermelon and melon production. Despite its economic importance, relatively little is known about the molecular mechanisms of pathogenicity and virulence of A. citrulli. Like other plant-pathogenic bacteria, A. citrulli relies on a type III secretion system (T3SS) for pathogenicity. On the basis of sequence and operon arrangement analyses, A. citrulli was found to have a class II hrp gene cluster similar to those of Xanthomonas and Ralstonia spp. In the class II hrp cluster, hrpG and hrpX play key roles in the regulation of T3SS effectors. However, little is known about the regulation of the T3SS in A. citrulli. This study aimed to investigate the roles of hrpG and hrpX in A. citrulli pathogenicity. We found that hrpG or hrpX deletion mutants of the A. citrulli group II strain Aac5 had reduced pathogenicity on watermelon seedlings, failed to induce a hypersensitive response in tobacco, and elicited higher levels of reactive oxygen species in Nicotiana benthamiana than the wild-type strain. Additionally, we demonstrated that HrpG activates HrpX in A. citrulli. Moreover, transcription and translation of the type 3-secreted effector (T3E) gene Aac5_2166 were suppressed in hrpG and hrpX mutants. Notably, hrpG and hrpX appeared to modulate biofilm formation. These results suggest that hrpG and hrpX are essential for pathogenicity, regulation of T3Es, and biofilm formation in A. citrulli.
Summary
The cucurbit pathogenic bacterium Acidovorax citrulli requires a functional type III secretion system (T3SS) for pathogenicity. In this bacterium, as with Xanthomonas and Ralstonia spp., an AraC‐type transcriptional regulator, HrpX, regulates expression of genes encoding T3SS components and type III‐secreted effectors (T3Es). The annotation of a sequenced A. citrulli strain revealed 11 T3E genes. Assuming that this could be an underestimation, we aimed to uncover the T3E arsenal of the A. citrulli model strain, M6. Thorough sequence analysis revealed 51 M6 genes whose products are similar to known T3Es. Furthermore, we combined machine learning and transcriptomics to identify novel T3Es. The machine‐learning approach ranked all A. citrulli M6 genes according to their propensity to encode T3Es. RNA‐Seq revealed differential gene expression between wild‐type M6 and a mutant defective in HrpX: 159 and 28 genes showed significantly reduced and increased expression in the mutant relative to wild‐type M6, respectively. Data combined from these approaches led to the identification of seven novel T3E candidates that were further validated using a T3SS‐dependent translocation assay. These T3E genes encode hypothetical proteins that seem to be restricted to plant pathogenic Acidovorax species. Transient expression in Nicotiana benthamiana revealed that two of these T3Es localize to the cell nucleus and one interacts with the endoplasmic reticulum. This study places A. citrulli among the ‘richest’ bacterial pathogens in terms of T3E cargo. It also revealed novel T3Es that appear to be involved in the pathoadaptive evolution of plant pathogenic Acidovorax species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.