Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K+ channels, which are reported to regulate the activation of microglia. However, little is known about the role of Dlg1 in microglia and the maintenance of central nervous system homeostasis. In this study, we found that Dlg1 knockdown suppressed lipopolysaccharide (LPS)-induced inflammation by down-regulating the activation of nuclear factor-κB signaling and the mitogen-activated protein kinase pathway in microglia. Moreover, using an inducible Dlg1 microglia-specific knockout (Dlg1flox/flox; CX3CR1CreER) mouse line, we found that microglial Dlg1 knockout reduced the activation of microglia and alleviated the LPS-induced depression-like behavior. In summary, our results demonstrated that Dlg1 plays a critical role in microglial activation and thus provides a potential therapeutic target for the clinical treatment of depression.
Coronaviruses SARS-CoV-2 infected more than 156 million people and caused over 3 million death in the whole world, therefore a better understanding of the underlying pathogenic mechanism and the searching for more effective treatments were urgently needed. Angiotensin-converting enzyme 2 (ACE2) was the receptor for SARS-CoV-2 infection. In this study, we found that ACE2 was an interferon-stimulated gene (ISG) in human cell lines. By performing an ISG library screening, we found that ACE2 levels were positively regulated by multiple ISGs. Interestingly, ACE2 levels were highly correlated with ISGs-induced NF-κB activities, but not IFNβ levels. Furthermore, using an approved clinical durgs library, we found two clinical drugs, Cepharanthine and Glucosamine, significantly inhibited ACE2 level, IFNβ level, and NF-κB signaling downstream TNFα and IL6 levels. Our finding suggested the possible inhibitory effects of Cepharanthine and Glucosamine during SARS-CoV-2 infection and the subsequent inflammatory cytokine storm.
Postpartum depression (PPD), a severe mental health disorder, is closely associated with decreased gonadal hormone levels during the postpartum period. Mangiferin (MGF) possesses a wide range of pharmacological activities, including anti-inflammation. Growing evidence has suggested that neuroinflammation is involved in the development of depression. However, the role of MGF in the development of PPD is largely unknown. In the present study, by establishing a hormone-simulated pregnancy PPD mouse model, we found that the administration of MGF significantly alleviated PPD-like behaviors. Mechanistically, MGF treatment inhibited microglial activation and neuroinflammation. Moreover, we found that MGF treatment inhibited mitogen-activated protein kinase (MAPK) signaling in vivo and in vitro. Together, these results highlight an important role of MGF in microglial activation and thus give insights into the potential therapeutic strategy for PPD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.