The level of circulating tumor cells (CTCs) plays a critical role in tumor metastasis and personalized therapy, but it is challenging for highly efficient capture and detection of CTCs because of the extremely low concentration in peripheral blood. Herein, we report near-infrared fluorescent AgS nanodot-based signal amplification combing with immune-magnetic spheres (IMNs) for highly efficient magnetic capture and ultrasensitive fluorescence labeling of CTCs. The near-infrared fluorescent AgS nanoprobe has been successfully constructed through hybridization chain reactions using aptamer-modified AgS nanodots, which can extremely improve the imaging sensitivity and reduce background signal of blood samples. Moreover, the antiepithelial-cell-adhesion-molecule (EpCAM) antibody-labeled magnetic nanospheres have been used for highly capture rare tumor cells in whole blood. The near-infrared nanoprobe with signal amplification and IMNs platform exhibits excellent performance in efficient capture and detection of CTCs, which shows great potential in cancer diagnostics and therapeutics.
Bovine adrenal medulla 22 (BAM22), one of the cleavage products of proenkephalin A, possesses high affinity for opioid receptors and sensory neuron-specific receptor (SNSR). The present study was designed to examine the expression of BAM22 in the spinal cord and dorsal root ganglion (DRG) of naive rats as well as in a model of inflammation. BAM22-like immunoreactivity (BAM22-IR) was expressed in fibers in the spinal cord, with high density seen in lamina I in naïve rats. The expression of BAM22-IR in the superficial laminae was greatly reduced following dorsal rhizotomy. BAM22-IR was also located in 19% of DRG cells, mainly in the small- and medium-sized subpopulations. Following injection of complete Freund's adjuvant (CFA) in the hindpaw, the expression of BAM22-IR in the superficial laminae of the spinal cord and small-sized DRG neurons on the ipsilateral side was markedly increased. Double labeling showed that the Fos-positive nucleus was surrounded by BAM22-IR cytoplasm in the spinal dorsal horn neurons or closely associated with BAM22-IR fibers in the superficial laminae. Furthermore, CFA-induced mechanical allodynia in the inflamed paw was potentiated by intrathecal administration of anti-BAM22 antibody. Together, these results demonstrate for the first time that BAM22-like peptide is mainly located in the superficial laminae of the spinal cord and mostly originates from nociceptive DRG neurons. BAM22 could thus act as a ligand for presynaptic opioid receptors and SNSR. Our study also provides evidence suggesting that BAM22 plays a role in the modulation of nociceptive processing at the spinal level under normal and inflammatory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.