Lithium niobate material (LN) has shown great application potentials in the fabrication of integrated optical devices due to its excellent physical properties, especially with the occurrence of lithium niobate-on-insulator (LNOI) substrate. However, the greatest challenge of micro/nano optical devices based on LN material lies in the precise etching process and thus limits its applications. In this paper, we comprehensively analyze the etching results treated by the proposed proton-exchanged wet-etching method (PEWE) combining with theoretical simulations and experiments. It is found that the proton-exchanged layer in the LN material can be easily etched after using a mixture acid of HF/HNO 3 , leading to the improvement of etching rate and surface morphology. The lowest roughness of the optical waveguide is measured to be 0.81 nm, which is beneficial for the performance improvement of LN-based optical devices. Ultimately, a quasi-vertical sidewall of the upper part of optical waveguide with improved surface morphology is successfully realized by utilizing the PEWE. Moreover, this method could also be extended to improve the performance of LNOI-based optical devices and pave the way for ultra-compact photonic integrated circuits based on LNOI.
Electro-optic modulators (EOMs) based on a thin-film lithium niobate (TFLN) photonic integration platform play a crucial role in loading electrical signals onto optical signals. In this paper, we proposed on-chip EOMs operating at two commercially available wavelengths of 850 and 1550 nm and successfully demonstrated rather low voltage-length products (V π •Ls) of 0.78 V•cm and 1.29 V•cm, respectively. Additionally, the EOM working at 1550 nm exhibits the capability of 3-dB electro-optic (E-O) bandwidth beyond 40 GHz due to the limitation of our test conditions. This study is quite helpful for understanding EOM structures in a TFLN platform, as well as the fabrication of high-performance and multifunctional EOM devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.