Background
Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures.
Methods
We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of potential stem cell markers CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts, mRNA expression of these markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated
in vivo
.
Results
All five putative stem cell markers showed distinct expression patterns in the tumours examined. Two patient-derived cell lines highly expressed CD133 (> 85% of positive cells) and three other cell lines had an expression level of about 50% whereas in long-term culture based models CD133 expression ranged only from 0 to 20%. In 8/14 cell lines, more than 80% of the cells were positive for CD24 and 11/14 were over 70% positive for CD44. 10/14 cell lines expressed CDCP1 on ≥ 83% of cells. CXCR4 expression was determined solely on 94 L and SW480.
Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated surface markers and showed single cell fractions expressing up to three markers simultaneously.
Statistical analysis revealed that the CXCR4 mRNA level correlates negatively with the protein expression of CD133, CD44, CD24 and CDCP1 in cell lines and xenografts.
A lower differentiation grade of donor material correlated with a higher CDCP1 mRNA expression level in the respective tumour model.
In vivo
growth behaviour studies of SW620 revealed significantly higher take rates and shorter doubling times in the tumour growth of CD133 positive subclones in comparison to the unsorted cell line or CD133 negative subclones.
Conclusions
Our data revealed correlations in the expression of surface markers CD44 and CD24 as well as CD44 and CDCP1 and strongly suggest that CD133 is a stem cell marker within our colon carcinoma panel. Further studies will elucidate its role as a potential therapeutic target.
RTB provides good to excellent diagnostic performance for discriminating malignancy and tumor histological subtype. However, its performance is intermediate or even poor when considering prognostic criteria like Fuhrman grade or microscopic necrosis. Thus, this possible inaccuracy should be taken into consideration when using RTB for accurate guidance of treatment strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.