Ride hailing platforms, such as Uber, Lyft, Ola or DiDi, have traditionally focused on the satisfaction of the passengers, or on boosting successful business transactions. However, recent studies provide a multitude of reasons to worry about the drivers in the ride hailing ecosystem. The concerns range from bad working conditions and worker manipulation to discrimination against minorities. With the sharing economy ecosystem growing, more and more drivers financially depend on online platforms and their algorithms to secure a living. It is pertinent to ask what a fair distribution of income on such platforms is and what power and means the platform has in shaping these distributions.In this paper, we analyze job assignments of a major taxi company and observe that there is significant inequality in the driver income distribution. We propose a novel framework to think about fairness in the matching mechanisms of ride hailing platforms. Specifically, our notion of fairness relies on the idea that, spread over time, all drivers should receive benefits proportional to the amount of time they are active in the platform. We postulate that by not requiring every match to be fair, but rather distributing fairness over time, we can achieve better overall benefit for the drivers and the passengers. We experiment with various optimization problems and heuristics to explore the means of achieving two-sided fairness, and investigate their caveats and side-effects. Overall, our work takes the first step towards rethinking fairness in ride hailing platforms with an additional emphasis on the well-being of drivers.
In this work, we de ne and solve the Fair Top-k Ranking problem, in which we want to determine a subset of k candidates from a large pool of n k candidates, maximizing utility (i.e., select the "best" candidates) subject to group fairness criteria.Our ranked group fairness de nition extends group fairness using the standard notion of protected groups and is based on ensuring that the proportion of protected candidates in every pre x of the top-k ranking remains statistically above or indistinguishable from a given minimum. Utility is operationalized in two ways: (i) every candidate included in the top-k should be more quali ed than every candidate not included; and (ii) for every pair of candidates in the top-k, the more quali ed candidate should be ranked above.An e cient algorithm is presented for producing the Fair Top-k Ranking, and tested experimentally on existing datasets as well as new datasets released with this paper, showing that our approach yields small distortions with respect to rankings that maximize utility without considering fairness criteria. To the best of our knowledge, this is the rst algorithm grounded in statistical tests that can mitigate biases in the representation of an under-represented group along a ranked list.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.