We have designed MI-219 as a potent, highly selective and orally active small-molecule inhibitor of the MDM2-p53 interaction. MI-219 binds to human MDM2 with a Ki value of 5 nM and is 10,000-fold selective for MDM2 over MDMX. It disrupts the MDM2-p53 interaction and activates the p53 pathway in cells with wild-type p53, which leads to induction of cell cycle arrest in all cells and selective apoptosis in tumor cells. MI-219 stimulates rapid but transient p53 activation in established tumor xenograft tissues, resulting in inhibition of cell proliferation, induction of apoptosis, and complete tumor growth inhibition. MI-219 activates p53 in normal tissues with minimal p53 accumulation and is not toxic to animals. MI-219 warrants clinical investigation as a new agent for cancer treatment.cancer therapy ͉ MDM2-p53 protein-protein interaction ͉ selective toxicity to tumors ͉ small-molecule inhibitor T he tumor suppressor p53 plays a central role in the regulation of cell cycle, apoptosis, DNA repair, and senescence (1-4). Because of the prominent role played by p53 in suppressing oncogenesis (5), it is not surprising that p53 function is impaired in all human cancers. Several distinct approaches have been pursued to restore p53 function as a new cancer therapeutic strategy (6-9). Three recent studies, using unique genetic mouse models, have demonstrated that the restoration of p53 leads universally to a rapid and robust regression of established sarcomas, lymphomas, and liver tumors (10)(11)(12)(13)(14). These studies provide strong evidence that established tumors remain persistently vulnerable to p53 tumorsuppressor function and that restoration of p53 function is therefore a powerful cancer therapeutic strategy (13).In Ϸ50% of human cancers, the gene encoding p53 is either deleted or mutated, rendering the p53 protein inactive (5, 15). In the remaining cancers, p53 retains its wild-type status but its function is effectively inhibited by its primary cellular inhibitor, the human MDM2 oncoprotein (mouse double minute 2, also termed HDM2 in humans) (5,16,17). One attractive pharmacological approach to p53 reactivation is to use a small molecule to block the MDM2-p53 interaction (6)(7)(8)18). The discovery of the Nutlins provided the important proof of the concept for this approach (7). Nutlins were shown to bind to MDM2, block the MDM2-p53 interaction, and activate wild-type p53 (7,(19)(20)(21). Nutlin-3a exhibits strong anti-tumor activity in multiple xenograft mouse models of human cancer (7,19). The discovery of the Nutlins has fueled enthusiasm for the development of small-molecule MDM2 inhibitors as a new class of anticancer therapy (6,8,22,23).One critical question in the development of MDM2 inhibitors for cancer treatment is their potential toxicity to normal tissues. This concern was heightened by a recent genetic study, which showed that p53 activation in the absence of the MDM2 gene causes severe toxicity to radiosensitive normal adult mouse tissues, leading to rapid animal death (24). Previous studies on ...
Ewing's sarcoma family tumors (ESFTs) are aggressive malignancies which frequently harbor characteristic EWS-FLI1 or EWS-ERG genomic fusions. Here we report that these fusion products interact with the DNA damage response protein and transcriptional co-regulator PARP-1. ESFT cells, primary tumor xenografts and tumor metastases were all highly sensitive to PARP1 inhibition. Addition of a PARP1 inhibitor to the second-line chemotherapeutic agent temozolamide resulted in complete responses of all treated tumors in an EWS-FLI1-driven mouse xenograft model of ESFT. Mechanistic investigations revealed that DNA damage induced by expression of EWS-FLI1 or EWS-ERG fusion genes was potentiated by PARP1 inhibition in ESFT cell lines. Notably, EWS-FLI1 fusion genes acted in a positive feedback loop to maintain the expression of PARP1, which was required for EWS-FLI-mediated transcription, thereby enforcing oncogene-dependent sensitivity to PARP-1 inhibition. Together, our findings offer a strong preclinical rationale to target the EWS-FLI1: PARP1 intersection as a therapeutic strategy to improve the treatment of Ewing's sarcoma family tumors.
Using a high throughput screening (HTS) approach, we have identified and validated several small molecule Mcl-1 inhibitors (SMIs). Here we describe a novel selective Mcl-1 SMI inhibitor, 2 (UMI-77), developed by structure-based chemical modifications of the lead compound 1 (UMI-59). We have characterized the binding of UMI-77 to Mcl-1 by using complementary biochemical, biophysical and computational methods, and determined its antitumor activity against panel of pancreatic cancer (PC) cells and in vivo xenograft model. UMI-77 binds to the BH3 binding groove of Mcl-1 with Ki of 490 nM, showing selectivity over other members of anti-apoptotic Bcl-2 members. UMI-77 inhibits cell growth and induces apoptosis in PC cells in a time and dose-dependent manner, accompanied by cytochrome c release and caspase-3 activation. Co-immunoprecipitation experiments revealed that UMI-77 blocks the heterodimerization of Mcl-1/Bax and Mcl-1/Bak in cells, thus antagonizing the Mcl-1 function. The Bax/Bak-dependent induction of apoptosis was further confirmed by using murine embryonic fibroblasts that are Bax and Bak deficient. In an in vivo BxPC-3 xenograft model, UMI-77 effectively inhibited tumor growth. Western blot analysis in tumor remnants revealed enhancement of pro-apoptotic markers and significant decrease of survivin. Collectively, these promising findings demonstrate the therapeutic potential of Mcl-1 inhibitors against PC and warrant further preclinical investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.