Calibration of inertial measurement units (IMU) is carried out to estimate the coefficients which transform the raw outputs of inertial sensors to meaningful quantities of interest. Based on the fact that the norms of the measured outputs of the accelerometer and gyroscope cluster are equal to the magnitudes of specific force and rotational velocity inputs, respectively, an improved multi-position calibration approach is proposed. Specifically, two open but important issues are addressed for the multi-position calibration: (1) calibration of inter-triad misalignment between the gyroscope and accelerometer triads and (2) the optimal calibration scheme design. A new approach to calibrate the inter-triad misalignment is devised using the rotational axis direction measurements separately derived from the gyroscope and accelerometer triads. By maximizing the sensitivity of the norm of the IMU measurement with respect to the calibration parameters, we propose an approximately optimal calibration scheme. Simulations and real tests show that the improved multi-position approach outperforms the traditional laboratory calibration method, meanwhile relaxing the requirement of precise orientation control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.