In the current literature considering multi-cell multi-user massive multiple-input multiple-output (MU-Massive-MIMO) systems, equal uplink power allocation among users is typically assumed, which does not exploit the potential of peruser power control. By contrast, in this paper we apply multi-cell uplink power control, assuming the minimum mean-square-error receiver based on the pilot contaminated channel estimation and a very large but finite number of antennas at the base station. We derive the lower bound on the average post-processing uplink signal to interference-plus-noise ratio (SINR) with individual power assignment between pilot and data transmissions for each user, which facilitates a joint iterative uplink pilot and data power control strategy that minimizes the sum transmit power of all users subject to the per-user SINR and per-user power constraints. The convergence of the proposed algorithm to a unique fixed point optimal solution is discussed for both single-and multi-user scenarios. Numerical results indicate the significance of uplink power control which further improves the energy efficiency in MU-Massive-MIMO systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.