With the rapidly increasing interests on wearable electronics over the past decades, the limited energy density and nondeformable configuration of conventional 2D lithium-ion batteries (LIBs) have already become the dominant obstacles that are hindering the roads of wearable consumer electronics toward ubiquity. [1][2][3][4][5] Hence, it is urgent to develop an alternative highperformance flexible energy storage device to break through the inherent restrictions of rigid LIBs. [6][7][8] The Li-CO 2 battery, a newly conceptual metal-gas battery, has been considered as a promising candidate for the next-generation high-performance electrochemical energy storage system recently. [9,10] It possesses a high theoretical energy density via the four-electrons transfer reaction (4Li + + 3CO 2 + 4e − → 2Li 2 CO 3 + C, E° = 2.80 V vs Li + /Li) and provides a novel environmentally friendly approach to CO 2 fixing which is of great benefit to alleviate global warming. [11][12][13] Interestingly, the Li-CO 2 battery is also very attractive for aerospace exploration; for example, it may be a possible energy system for providing electricity on Mars where the atmosphere consists of 96% CO 2 gas. [14] In spite of the aforementioned favorable factors, very few reports in the literature related to flexible Li-CO 2 battery devices for wearable electronics have been reported so far. After systematical investigations, it is found that the main challenges of fabricating high-performance flexible Li-CO 2 battery devices lie in the following three aspects: (1) carbon nanophases (e.g., Ketjenblack, [9,10,15] CNTs, [11,16] graphene [17,18] ), which dominate those known Li-CO 2 battery catalysts, induce the formation of Li 2 CO 3 , a wide-bandgap insulator. [19,20] It results in a sluggish kinetics for CO 2 evolution so that a high charge potential of 4.2-4.6 V was commonly required to drive the degradation of Li 2 CO 3 in most previous Li-CO 2 batteries. [10,11,17] Such high potential not only increases the risk of electrolyte decomposition but also accelerates the oxidation of electrodes. [21,22] Meanwhile, originated from the incomplete decomposition, more and more solid carbonate species accumulated in the surface of cathode during cycling, leading to a distinct decrease on catalytic performance and even the rapid extension of impedance up to a "sudden death" of the battery. [20,23,24] Consequently, the majority of those reported Li-CO 2 batteries showed a negligibleThe rapid development of wearable electronics requires a revolution of power accessories regarding flexibility and energy density. The Li-CO 2 battery was recently proposed as a novel and promising candidate for nextgeneration energy-storage systems. However, the current Li-CO 2 batteries usually suffer from the difficulties of poor stability, low energy efficiency, and leakage of liquid electrolyte, and few flexible Li-CO 2 batteries for wearable electronics have been reported so far. Herein, a quasi-solidstate flexible fiber-shaped Li-CO 2 battery with low overpotential and ...
First-principles density functional theory calculations are first used to study possible reaction mechanisms of molybdenum carbide (Mo2C) as cathode catalysts in Li-CO2 batteries. By systematically investigating the Gibbs free energy changes of different intermediates during lithium oxalate (Li2C2O4) and lithium carbonate (Li2CO3) nucleations, it is theoretically demonstrated that Li2C2O4 could be stabilized as the final discharge product, preventing the further formation of Li2CO3. The surface charge distributions of Li2C2O4 adsorbing onto catalytic surfaces are studied by using Bader charge analysis, given that electron transfers are found between Li2C2O4 and Mo2C surfaces. The catalytic activities of catalysts are intensively evaluated toward the discharge and charge processes by calculating the electrochemical free energy diagrams to identify the overpotentials. Our studies promote the understanding of electrochemical processes and shed more light on the design and optimization of cathode catalysts for Li-CO2 batteries.
Objective: In this study, circulating serum betatrophin levels were quantitated and their relationships with insulin resistance (IR) and other metabolic parameters in Chinese subjects with varying degrees of obesity and glucose tolerance were examined. Methods: Serum betatrophin levels were determined using ELISA in 60 subjects with normal glucose tolerance (NGT: 17 lean, 23 overweight, and 20 obese subjects) and 56 subjects with type 2 diabetes mellitus (T2DM: 14 lean, 23 overweight, and 19 obese subjects). The associations of serum betatrophin levels with adiposity, glucose, lipid profile, and hepatic enzyme parameters were studied. Results: Serum betatrophin concentrations were significantly higher in overweight subjects in both the NGT and T2DM groups; however, no significant difference between lean and obese participants was observed. No significant difference was found between males and females or between NGT and T2DM subjects. Serum betatrophin concentrations correlated positively with fasting insulin, homeostasis model assessment-estimated insulin resistance (HOMA-IR), c-glutamyl transpeptidase (c-GT), and alanine aminotransferase (ALT) in all subjects. Serum betatrophin concentrations showed an independent association with c-GT and HOMA-IR. Conclusions: Serum betatrophin levels were significantly increased in overweight individuals but not in individuals with obesity or T2DM. Serum betatrophin concentrations were significantly associated with IR, but not with lipid profiles, glucose homeostasis, or diabetes.
The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (RMCs) were incubated in normal or high glucose medium with or without the PGC-1α-overexpressing plasmid (pcDNA3-PGC-1α) for 48 h. In the diabetic rats, decreased PGC-1α expression was associated with increased mitochondrial ROS generation in the renal cortex, increased proteinuria, glomerular hypertrophy, and higher glomerular 8-OHdG (a biomarker for oxidative stress). In vitro, hyperglycemia induced the downregulation of PGC-1α, which led to increased DRP1 expression, increased mitochondrial fragmentation and damaged network structure. This was associated with an increase in ROS generation and mesangial cell hypertrophy. These pathological changes were reversed in vitro by the transfection of pcDNA3-PGC-1α. These data suggest that PGC-1α may protect DN via the inhibition of DRP1-mediated mitochondrial dynamic remodeling and ROS production. These findings may assist the development of novel therapeutic strategies for patients with DN.
In the current literature considering multi-cell multi-user massive multiple-input multiple-output (MU-Massive-MIMO) systems, equal uplink power allocation among users is typically assumed, which does not exploit the potential of peruser power control. By contrast, in this paper we apply multi-cell uplink power control, assuming the minimum mean-square-error receiver based on the pilot contaminated channel estimation and a very large but finite number of antennas at the base station. We derive the lower bound on the average post-processing uplink signal to interference-plus-noise ratio (SINR) with individual power assignment between pilot and data transmissions for each user, which facilitates a joint iterative uplink pilot and data power control strategy that minimizes the sum transmit power of all users subject to the per-user SINR and per-user power constraints. The convergence of the proposed algorithm to a unique fixed point optimal solution is discussed for both single-and multi-user scenarios. Numerical results indicate the significance of uplink power control which further improves the energy efficiency in MU-Massive-MIMO systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.