The application of RNA interference (RNAi) technology for pest control is environmentally friendly and accurate. However, the efficiency of RNAi is often inconsistent and unreliable, and finding a suitable carrier element is considered critical to success in overcoming biotic and abiotic barriers to reach the target site. The fall armyworm, Spodoptera frugiperda (FAW), which is one of most important global agricultural pests, has recently spread rapidly to other parts of the world. In this study, a method to improve the stability and RNAi efficiency of the dsRNA carrier complex was reported. Methoprene-tolerant gene (Met) was selected as a target, a gene which is critical to the growth and development of FAW. Biomaterials nanoliposomes (LNPs) were modified with polyethylenimine (PEI) to deliver the dsRNA of Met. The synthesized Met3@PEI@LNPs reached a size of 385 nm and were found to load dsRNA effectively. Through stability and protection assays, it was found that LNPs provided reliable protection. In addition, the release curve also demonstrated that LNPs were able to prevent premature release under alkaline condition of the insect midgut but accelerate the release after entering the acidic environment of the target cells. The cell transfection efficiency of the prepared LNPs reached 96.4%. Toxicity tests showed that the use of LNPs could significantly improve the interference efficiency, with 91.7% interference efficiency achieved when the concentration of dsRNA in LNPs was only 25% of that of the control. Successful interference of Met demonstrated it could significantly shorten the larval period and make the larvae pupate earlier, thus achieving the purpose of control. In this study, we have demonstrated the use of nanotechnology to provide a novel RNAi delivery method for pest control.
As potential molecular targets for developing novel pest management strategies, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) have been considered to initiate odor recognition in insects. Herein, we investigated the OBPs and CSPs in a major global crop pest (Spodoptera exempta). Using transcriptome analysis, we identified 40 OBPs and 33 CSPs in S. exempta, among which 35 OBPs and 29 CSPs had intact open reading frames. Sequence alignment indicated that 30 OBPs and 23 CSPs completely contained the conserved cysteines. OBPs of lepidopteran insects usually belonged to classical, minus-C, and plus-C groups. However, phylogenetic analyses indicated that we only identified 28 classical and seven minus-C OBPs in S. exempta, suggesting that we might have missed some typical OBPs in lepidopteran insects, probably due to their low expression levels. All of the CSPs from S. exempta clustered with the orthologs of other moths. The identification and expression of the OBPs and CSPs were well studied in insect adults by transcriptional analyses, and herein we used samples at different stages to determine the expression of OBPs and CSPs in S. exempta. Interestingly, our data indicated that several OBPs and CSPs were especially or more highly expressed in larvae or pupae than other stages, including three exclusively (SexeOBP13, SexeOBP16 and SexeCSP23) and six more highly (SexeOBP15, SexeOBP37, SexeCSP4, SexeCSP8, SexeCSP19, and SexeCSP33) expressed in larvae, two exclusively (SexeCSP6 and SexeCSP20) and three more highly (SexeOBP18, SexeCSP17, and SexeCSP26) expressed in pupae. Usually, OBPs and CSPs had both male- and female-biased expression patterns in adult antennae. However, our whole-body data indicated that all highly expressed OBPs and CSPs in adults were male-biased or did not differ, suggesting diverse OBP and CSP functions in insect adults. Besides identifying OBPs and CSPs as well as their expression patterns, these results provide a molecular basis to facilitate functional studies of OBPs and CSPs for exploring novel management strategies to control S. exempta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.