This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Intermediate-size noncoding RNAs (is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in Plasmodium falciparum, which is the most virulent malaria parasite infecting human being. By using Illumina/Solexa paired-end sequencing of an is-ncRNA-specific library, we performed a systematic identification of novel is-ncRNAs in intraerythrocytic P. falciparum, strain 3D7. A total of 1,198 novel is-ncRNA candidates, including antisense, intergenic, and intronic is-ncRNAs, were identified. Bioinformatics analyses showed that the intergenic is-ncRNAs were the least conserved among different Plasmodium species, and antisense is-ncRNAs were more conserved than their sense counterparts. Twenty-two novel snoRNAs were identified, and eight potential novel classes of P. falciparum is-ncRNAs were revealed by clustering analysis. The expression of randomly selected novel is-ncRNAs was confirmed by RT-PCR and northern blotting assays. An obvious different expressional profile of the novel is-ncRNA between the early and late intraerythrocytic developmental stages of the parasite was observed. The expression levels of the antisense RNAs correlated with those of their cis-encoded sense RNA counterparts, suggesting that these is-ncRNAs are involved in the regulation of gene expression of the parasite. In conclusion, we accomplished a deep profiling analysis of novel is-ncRNAs in P. falciparum, analysed the conservation and structural features of these novel is-ncRNAs, and revealed their differential expression patterns during the development of the parasite. These findings provide important information for further functional characterisation of novel is-ncRNAs during the development of P. falciparum.
BackgroundFollowing the decline of malaria transmission in many countries and regions, serological parameters have become particularly useful for estimating malaria transmission in low-intensity areas. This study evaluated a novel serological marker, Malaria Random Constructed Antigen-1 (M.RCAg-1), which contains 11 epitopes from eight Plasmodium falciparum antigens, as a tool for assessing malaria transmission intensity along the border area of China-Myanmar.MethodSerum from Plasmodium falciparum and P. vivax patients was used to detect the properties of M.RCAg-1 and antibody responses. Cross-sectional surveys were conducted at the China-Myanmar border and in Hainan province in 2012 and 2013 using cluster sampling. Filter blood spot papers were collected from all participants. Antibodies against M.RCAg-1 were detected using indirect ELISA. The Mann–Whitney test and Spearman’s rank correlation test were performed to analyze antibody data. P. falciparum malaria transmission intensity was estimated using a catalytic conversion model based on the maximum likelihood of generating a community seroconversion rate (SCR).ResultsM.RCAg-1 was well-recognized by the naturally acquired anti-malaria antibodies in P. falciparum patients and had very limited cross-reactivity with P. vivax infection. The total amount of IgG antibodies was decreased with the decrease in parasitemia after taking medication and lasted several weeks. In a population survey, the antibody levels were higher in residents living close to the China-Myanmar border than those living in non-epidemic areas (P < 0.0001), but no significant difference was observed between residents from Hainan and non-epidemic areas. The calculated SCR was 0.0128 for Jieyangka, 0.004 for Susuzhai, 0.0047 for Qiushan, and 0.043 for Kayahe. The estimated exposure rate obtained from the anti-M.RCAg-1 antibody level correlated with traditional measures of transmission intensity derived from altitude.ConclusionOur study demonstrates that M.RCAg-1 is potentially useful as a serological indicator of exposure to P. falciparum malaria, especially for malaria surveillance in low transmission areas.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-016-0194-x) contains supplementary material, which is available to authorized users.
Background To understand the Plasmodium vivax malaria transmission intensity and to assess the effectiveness of prevention and control measures taken along the China–Myanmar border, a catalytic model was used to calculate the seroconversion rate, an important indicator of malaria transmission intensity with high sensitivity, which is particularly useful in areas of low transmission. Methods Five counties in Yunnan Province bordering Myanmar were selected as survey sites, and subjects were obtained in each county by stratified random sampling in 2013–2014. Fingerstick blood was collected from each subject and tested for antibodies to P. vivax Merozoite Surface Protein 1-19 (PvMSP1-19) using indirect ELISA. A catalytic conversion model was used to assess the transmission intensity of P. vivax malaria based on the maximum likelihood of generating a community seroconversion rate. Results A total of 3064 valid blood samples were collected. Antibody levels were positively correlated with age. The seroconversion rate (SCR) values for each village were Luoping (0.0054), Jingqiao (0.0061), Longpen (0.0087), Eluo (0.0079), Banwang (0.0042) and Banbie (0.0046), respectively. Conclusion Overall, the intensity of P. vivax malaria transmission in the border areas of Yunnan Province is low and not entirely consistent across counties. Consecutive serological surveys are needed to provide a sensitive evaluation of transmission dynamics and can help to confirm areas where infection is no longer present.
Macrophage migration inhibitory factor (PMIF) expressed by Plasmodium parasites has been proved to be similar to the mammalian MIF in both structure and biological activity and is a critical upstream regulator in antimalaria innate immunity. In this work, using a genetically modified (MIF-KO) strain of highly lethal rodent Plasmodium yoelii 17XL (Py17XL), we found that PyMIF could increase the secretion of pro-inflammatory factors by eliciting the CD11b(+) Ly6C(+) cells accumulated in the spleen of infected mouse. In addition, the chemotactic effect of PyMIF was demonstrated to associate with cell receptors CXCR2, CXCR4 and the cell surface markers ICAM-1, LFA-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.