Using high performance liquid chromatography, tomato cultivars which contain the Crimson gene (og)were usually found to have higher lycopene content (5086 to 5786 mg/100 g fresh weight) than those cultivars lacking the gene (2622 to 4318 mg/100 g fresh weight). A comparison of the color readings taken from tomatoes at the equatorial region with those of the homogenate prepared from the same region showed that the hue of tomato homogenate was a better indicator of lycopene content than tomato surface hue. The tomatoes' lycopene content was not affected by ethylene treatment or cooking for 4, 8, and 16 min at 100 °C.
Endometriosis is an estrogen-dependent inflammatory disease. The anti-inflammatory cytokine IL-10 is also increased in endometriosis. IL-10 production by Th17 cells is critical for limiting autoimmunity and inflammatory responses. However, the mechanism of inducing IL-10-producing Th17 cells is still largely unknown. The present study investigated the differentiation mechanism and role of IL-10-producing Th17 cells in endometriosis. Here, we report that IL-10+Th17 cells are significantly increased in the peritoneal fluid of women with endometriosis, along with an elevation of IL-27, IL-6 and TGF-β. Compared with peripheral CD4+ T cells, endometrial CD4+ T cells highly expressed IL-27 receptors, especially the ectopic endometrium. Under external (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and local (estrogen, IL-6 and TGF-β) environmental regulation, IL-27 from macrophages and endometrial stromal cells (ESCs) induces IL-10 production in Th17 cells in vitro and in vivo. This process may be mediated through the interaction between c-musculoaponeurotic fibrosarconna (c-Maf) and retinoic acid-related orphan receptor gamma t (RORγt), and associated with the upregulation of downstream B lymphocyte-induced maturation protein-1 (Blimp-1). IL-10+Th17 cells, in turn, stimulate the proliferation and implantation of ectopic lesions and accelerate the progression of endometriosis. These results suggest that IL-27 is a pivotal regulator in endometriotic immune tolerance by triggering Th17 cells to produce IL-10 and promoting the rapid growth and implantation of ectopic lesions. This finding provides a scientific basis for potential therapeutic strategies aimed at preventing the development of endometriosis, especially for patients with high levels of IL-10+Th17 cells.
Red blood cells (RBCs) are known to function as a refuge for providing food resources and as a shelter against the host’s immune system after malaria parasite (Plasmodium) infection. Recent studies have reported significant production of extracellular vesicles (microparticles, MPs) in the circulation of malaria patients. However, it is unclear how these extracellular vesicles are generated and what their biological functions are. In this study, we isolated the MPs from a culture medium of normal RBCs and malaria parasite-infected RBCs (iRBCs), compared their quantity and origins, and profiled their miRNAs by deep sequencing. We found a much larger number of MPs released in the culture of iRBCs than in the culture of normal RBCs. Further investigation indicated that, in these MPs, human argonaute 2 (hAgo2) was found to bind to hundreds of miRNAs. These hAgo2-miRNA complexes were transferred into the parasites, and the expression of an essential malaria antigen, PfEMP1, was downregulated by miR-451/140 through its binding to the A and B subgroups of var genes, a family of genes encoding PfEMP1. Our data suggest for the first time that, through the release of MPs, mature RBCs present an innate resistance to malaria infection. These studies also shed new light on the reason why RBCs’ genetic mutation occurs mainly in populations living in intensive malaria endemic areas and on the possibility of using miRNAs as novel medicines for malaria patients.
Flavor-associated volatile chemicals make major contributions to consumers' perception of fruits. Although great progress has been made in establishing the metabolic pathways associated with volatile synthesis, much less is known about the regulation of those pathways. Knowledge of how those pathways are regulated would greatly facilitate efforts to improve flavor. Volatile esters are major contributors to fruity flavor notes in many species, providing a good model to investigate the regulation of volatile synthesis pathways.Here we initiated a study of peach (Prunus persica L. Batsch) fruits, and identified that the alcohol acyltransferase PpAAT1 contributes to ester formation. We next identified the transcription factor (TF) PpNAC1 as an activator of PpAAT1 expression and ester production. These conclusions were based on in vivo and in vitro experiments and validated by correlation in a panel of 30 different peach cultivars. Based on homology between PpNAC1 and the tomato (Solanum lycopersicum) TF NONRIPENING (NOR), we identified a parallel regulatory pathway in tomato. Overexpression of PpNAC1 enhances ripening in a nor mutant and restores synthesis of volatile esters in tomato fruits. Furthermore, in the NOR-deficient mutant tomatoes generated by CRISPR/Cas9, lower transcript levels of SlAAT1 were detected. The apple (Malus domestica) homolog MdNAC5 also stimulates MdAAT1 expression via binding to this gene's promoter. In addition to transcriptional control, epigenetic analysis showed that increased expression of NACs and AATs is associated with removal of the repressive mark H3K27me3 during fruit ripening. Our results support a conserved molecular mechanism in which NAC TFs activate ripening-related AAT expression, which in turn catalyzes volatile ester formation in multiple fruit species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.