A stable and reproducible superconductivity transition between 80 and 93 K has been unambiguously observed both resistively and magnetically in a new Y-Ba-Cu-0 compound system at ambient pressure. An estimated upper critical field H, 2(0) between 80 and 180 T was obtained.
Chemical construction of molecularly organic-inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) with silsesquioxane framework is expected to substantially improve their therapeutic performance and enhance the biological effects beneficial for biomedicine. In this work, we report on a simple, controllable, and versatile chemical homology principle to synthesize multiple-hybridized HMONs with varied functional organic groups homogeneously incorporated into the framework (up to quintuple hybridizations). As a paradigm, the hybridization of physiologically active thioether groups with triple distinctive disulfide bonds can endow HMONs with unique intrinsic reducing/acidic- and external high intensity focused ultrasound (HIFU)-responsive drug-releasing performances, improved biological effects (e.g., lowered hemolytic effect and improved histocompatibility), and enhanced ultrasonography behavior. The doxorubicin-loaded HMONs with concurrent thioether and phenylene hybridization exhibit drastically enhanced therapeutic efficiency against cancer growth and metastasis, as demonstrated both in vitro and in vivo.
Chemically exfoliated two-dimensional MnO2 nanosheets are successfully modified with amino-polyethylene glycol as a theranostic platform for ultrasensitive stimuli-responsive theranostics of cancer. The highly dispersed MnO2 nanosheets exhibit a unique break-up in the mildly acidic microenvironment of tumor tissues, which could substantially enhance their in vitro and in vivo performances in T1 -weighted magnetic resonance imaging. Such a pH-triggered breaking-up behavior could further promote the fast release of loaded anticancer drugs for concurrent pH-responsive drug release and circumvent the multidrug resistance of cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.