Damaged skin cannot prevent harmful bacteria from invading tissues, causing infected wounds and even serious tissue damage. Traditional treatments can not only kill pathogenic bacteria, but also suppress the growth of beneficial bacteria, thus destroying the balance of the damaged skin microbial ecosystem. Here, a living bacterial hydrogel scaffold is reported that accelerates infected wound healing through beneficial bacteria secreting antibacterial substances. Lactobacillus reuteri, a common probiotic, is encapsulated in hydrogel microspheres by emulsion polymerization and further immobilized in a hydrogel network by covalent cross‐linking of methacrylate‐modified hyaluronic acid. Owing to light‐initiated crosslinking, the hydrogel dressing can be generated in situ at the wound site. This hydrogel scaffold not only protects bacteria from immune system attack, but also prevents bacteria from escaping into the local environment, thus avoiding potential threats. Both in vitro and in vivo experiments show that it has excellent ability against harmful bacteria and anti‐inflammatory capabilities, promoting infected wound closure and new tissue regeneration. This work may open up new avenues for the application of living bacteria in the clinical management of infected wounds.
The aim of this study was to identify biomarkers for gastric cancer (GC) by iTRAQ. Using proteins extracted from a panel of 4 pairs of gastric adenocarcinoma samples (stage III-IV, Her-2 negative), we identified 10 up regulated and 9 down regulated proteins in all four pairs of GC samples compared to adjacent normal gastric tissue. The up regulated proteins are mainly involved in cell motility, while the down regulated proteins are mitochondrial enzymes involved in energy metabolism. The expression of three up regulated proteins (ANXA1, NNMT, fibulin-5) and one of the down regulated proteins (UQCRC1) was validated by Western Blot in 97 GC samples. ANXA1 was up regulated in 61.36% of stage I/II GC samples compared to matched adjacent normal gastric tissue, and its expression increased further in stage III/IV samples. Knockdown of ANXA1 by siRNA significantly inhibited GC cell migration and invasion, whereas over expression of ANXA1 promoted migration and invasion. We found decreased expression of UQCRC1 in all stages of GC samples. Our data suggest that increased cell motility and decreased mitochondrial energy metabolism are important hallmarks during the development of GC.
While angiotensin II (ang II) has been implicated in the pathogenesis of cardiac cachexia (CC), the molecules that mediate ang II's wasting effect have not been identified. It is known TNF-α level is increased in patients with CC, and TNF-α release is triggered by ang II. We therefore hypothesized that ang II induced muscle wasting is mediated by TNF-α. Ang II infusion led to skeletal muscle wasting in wild type (WT) but not in TNF alpha type 1 receptor knockout (TNFR1KO) mice, suggesting that ang II induced muscle loss is mediated by TNF-α through its type 1 receptor. Microarray analysis identified cholesterol 25-hydroxylase (Ch25h) as the down stream target of TNF-α. Intraperitoneal injection of 25-hydroxycholesterol (25-OHC), the product of Ch25h, resulted in muscle loss in C57BL/6 mice, accompanied by increased expression of atrogin-1, MuRF1 and suppression of IGF-1/Akt signaling pathway. The identification of 25-OHC as an inducer of muscle wasting has implications for the development of specific treatment strategies in preventing muscle loss.
Background: Serum cystatin C (CysC) is still becoming used as a marker of renal function but is far from being commonly used worldwide. The purpose of this study was to characterize the ureteral calculi patients with hydronephrosis-caused CysC changes in renal function. Methods: To better reflect the changes of renal function, we constructed models of ureteral obstruction in rats to mimic the hydronephrosis caused by human ureteral calculi. Moreover, our study included 200 patients diagnosed with ureteral calculi in our hospital between June 2017 and 2018. We compared the estimated glomerular filtration rate using different equations based on CysC and/or serum creatinine (SCr). Results: We found that the expression of CysC and SCr increased with the prolonged obstruction time by enzyme linked immunosorbent assay. Moreover, quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry further demonstrated that the expression of CysC increases with the degree of hydronephrosis. Among 200 patients with ureteral calculi, 40 (20.0%) had no hydronephrosis, 110 (55.0%) had mild hydronephrosis, 32 (16.0%) had moderate hydronephrosis and 18 (9.0%) had severe hydronephrosis. As the degree of hydronephrosis increased, the expression of neutrophil percentage, CysC, blood urea nitrogen, SCr and serum uric acid also increased. Multivariate analyses demonstrated that only CysC was an independent risk factor for hydronephrosis (p = 0.003). In addition, CysC and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) CysC equation showed the highest veracity in renal function estimation of patients with hydronephrosis caused by ureteral calculus. Conclusion: For patients with hydronephrosis caused by ureteral calculi, CysC better reflects the changes in renal function, and the CKD-EPI CysC equation has the highest accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.