The composition and properties of natural honeys differ with plant species on which the bees forage and the climatic conditions of the production areas. In Ethiopia, Amhara and Tigray are neighboring regions consisting of different agricultural activities and blossoms from different types of vegetations which may influence the natural composition and hence the properties of honey. So, the aim of the current study was to assess the quality of honey from selected districts of the two regions. In the study, 18 composited honey samples were collected from six selected districts and analyzed for selected physicochemical parameters and antioxidant and antimicrobial activities. The analyses of physicochemical parameters were carried out following standard procedures of IHC and QSAE. The antioxidant activity was determined by analyzing the RSA using DPPH while the antibacterial activities were determined by the agar well diffusion method. The moisture, ash content, electrical conductivity, pH, free acidity, reducing sugar, and sucrose content of the honey samples were found to be in the range 16.34 ± 0.26 to 19.83 ± 0.43 %, 0.08 ± 0.00 to 0.45 ± 0.03 %, 0.19 ± 0.00 to 0.89 ± 0.03 mS/cm, 3.79 ± 0.04 to 4.20 ± 0.01, 19.56 ± 1.13 to 38.11 ± 1.54 meq/kg, 62.10 ± 0.48 to 66.37 ± 0.20 %, and 1.35 ± 0.08 to 5.96 ± 0.10 %, respectively. The total phenolic content ranged from 1165.60 ± 23.45 to 1854.83 ± 10.47 mg/kg with antioxidant activity of 21.64 ± 0.26 to 36.12 ± 0.52 AEAC/100 g. The total phenolic contents showed strong correlation with RSA. Furthermore, all honey samples showed an antibacterial activity varying from 23.23 ± 0.12 to 28.84 ± 0.24 mm.
This study was conducted to assess the drinking water quality of north Mecha district, Amhara Region, Ethiopia. 26 drinking water samples were collected from the water points of the dweller community in the dry seasons of 2020 and subjected to the analysis of physicochemical parameters, bacteriological parameters, and the level of trace metals. The analysis of physicochemical parameters and the trace metals was carried out following the standard procedures of the laboratory, and the bacteriological water qualities were measured using the membrane filtration method. The F−, NO3−, SO42−, and Cu levels of the water samples were within the permissible limits of the WHO and compulsory Ethiopian standard (CES). Depending on turbidity, 61.54% of the tested water samples crossed the WHO limit of drinking water quality, and 100% of the samples surpassed the limits of EPA. Based on iron and ammonia levels, 38.46%, and 100% of the studied water samples violated the environmental protection agency (EPA) guidelines; 23.07%, and 3.84%, of the samples surpassed the WHO and CES drinking water quality standards. In view of pH, 23.07% of the tested water samples were not within the safe limit of the WHO and CES. 92.31% of the studied water samples were not potable as coliform bacterium (thermo tolerant indicator bacterium) growth was detected. The study revealed that the water sources of the study area are not safe for drinking unless appropriate treatment measurements are taken. Higher values of water quality parameters for the water samples from Koga irrigation site than the values for the water samples from the study sites found out of the irrigation site indicated the pollution load of Koga irrigation on the water quality of the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.