Purpose: Irinotecan and topotecan are used to treat a variety of different cancers. However, they have limitations, including chemical instability and severe side effects. To overcome these limitations, we developed the clinical indenoisoquinolines: LMP400 (indotecan), LMP776 (indimitecan), and LMP744. The purpose of the study is to build the molecular rationale for phase II clinical trials.Experimental Design: CellMinerCDB (http://discover.nci. nih.gov/cellminercdb) was used to mine the cancer cell lines genomic databases. The causality of Schlafen11 (SLFN11) was validated in isogenic cell lines. Because topoisomerase I (TOP1)-mediated replication DNA damage is repaired by homologous recombination (HR), we tested the "synthetic lethality" of HR-deficient (HRD) cells. Survival and cell-cycle alterations were performed after drug treatments in isogenic DT40, DLD1, and OVCAR cell lines with BRCA1, BRCA2, or PALB2 deficiencies and in organoids cultured from prostate cancer patient-derived xenografts with BRCA2 loss. We also used an ovarian orthotopic allograft model with BRCA1 loss to validate the efficacy of LMP400 and olaparib combination.Results: CellMinerCDB reveals that SLFN11, which kills cells undergoing replicative stress, is a dominant drug determinant to the clinical indenoisoquinolines. In addition, BRCA1-, BRCA2-, and PALB2-deficient cells were hypersensitive to the indenoisoquinolines. All 3 clinical indenoisoquinolines were also synergistic with olaparib, especially in the HRD cells. The synergy between LMP400 and olaparib was confirmed in the orthotopic allograft model harboring BRCA1 loss.Conclusions: Our results provide a rationale for molecularly designed clinical trials with the indenoisoquinolines as single agents and in combination with PARP inhibitors in HRD cancers expressing SLFN11.
Background Breast cancer is a heterogenous disease with several histological and molecular subtypes. Models that represent these subtypes are essential for translational research aimed at improving clinical strategy for targeted therapeutics. Methods Different combinations of genetic aberrations (Brca1 and Trp53 loss, and inhibition of proteins of the Rb family) were induced in the mammary gland by injection of adenovirus expressing Cre recombinase into the mammary ducts of adult genetically engineered mice. Mammary tumors with different genetic aberrations were classified into molecular subtypes based on expression of molecular markers and RNAseq analysis. In vitro potency assays and Western blots were used to examine their drug sensitivities. Results Induction of Brca1 and Trp53 loss in mammary ductal epithelium resulted in development of basal-like hormone receptor (HR)-negative mammary tumors. Inhibition of Rb and Trp53 loss or the combination of Rb, Trp53 and Brca1 aberrations resulted in development of luminal ductal carcinoma positive for ER, PR, and Her2 expression. HR positivity in tumors with Rb, Trp53 and Brca1 aberrations indicated that functionality of the Rb pathway rather than Brca1 status affected HR status in these models. Mammary tumor gene expression profiles recapitulated human basal-like or luminal B breast cancer signatures, but HR-positive luminal cancer models were endocrine resistant and exhibited upregulation of PI3K signaling and sensitivity to this pathway inhibition. Furthermore, both tumor subtypes were resistant to CDK4/6 inhibition. Conclusions Examination of molecular expression profiles and drug sensitivities of tumors indicate that these breast cancer models can be utilized as a translational platform for evaluation of targeted combinations to improve chemotherapeutic response in patients that no longer respond to hormone therapy or that are resistant to CDK4/6 inhibition.
Nongestational choriocarcinoma is a rare malignancy in humans with poor prognosis. Naturally occurring choriocarcinoma is also rare in laboratory mice, and no genetic mouse model accurately recapitulates the features of this cancer. Here we report development of a genetically engineered mouse (GEM) model with alterations in Brca2, Trp53, and RB that develops ovarian tumors. Most of the ovarian tumors displayed histological characteristics of nongestational choriocarcinoma of the ovary (NGCO) (47%) with abundant syncytiotrophoblasts and cytotrophoblasts, positive immunolabeling for human chorionic gonadotropin, and positive periodic acid–Schiff reaction. The rest of the ovarian tumors were serous epithelial ovarian carcinoma (SEOC) (26%) or mixed tumors consisting of NGCO and SEOC (26%). We further established syngeneic orthotopic mouse models for NGCO by in vivo passaging of GEM tumors. These metastatic models provide a platform for evaluating new treatment strategies in preclinical studies aimed at improving outcomes in choriocarcinoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.