A cDNA clone encoding the human C3a anaphylatoxin receptor (C3aR) was isolated from a pcDNAI/Amp expression library prepared from U-937 cells which had been differentiated with dibutyryl cAMP to a macrophage-like phenotype. The cDNA clone contained an insert of 4.3 kbp and was able to confer to transfected human HEK-293 cells the capacity to bind specifically iodinated human C3a. Chinese hamster ovary cells co-transfected with this cDNA clone and a G-protein alpha subunit (G alpha-16) became functionally responsive to C3a and a C3a analog synthetic peptide, as measured by increased phosphoinositide hydrolysis. As inferred from the cDNA sequence, the clone encodes a 482-residue polypeptide with seven hydrophobic membrane-spanning helices and a high homology to the human C5a and formyl-Met-Leu-Phe receptors. Uniquely among the family of G-protein coupled receptors, the C3aR contains an exceptionally large second extracellular loop of approximately 175 residues. Northern hybridizations revealed an approximately 2.3-kb transcript as the major and an additional approximately 3.9 kb-transcript as a minor transcription product of the C3aR. The C3aR appears to be widely expressed in different lymphoid tissues, as shown by Northern hybridizations, providing evidence for a central role of the C3a anaphylatoxin in inflammatory processes.
Bacteriophages infecting the neuroinvasive pathogenEscherichia coli K1 require an endosialidase to penetrate the polysialic acid capsule of the host. Sequence information is available for the endosialidases endoNE, endoNF, and endoN63D of the K1-specific phages K1E, K1F, and 63D, respectively. The cloned sequences share a highly conserved catalytic domain but differ in the length of the N-and C-terminal parts. Although the expression of active recombinant enzyme succeeded in the case of endoNE, it failed for endoNF. Protein alignments of all three endosialidase sequences gave rise to the assumption that inactivity of the cloned endoNF is caused by a C-terminal truncation. By reinvestigation of the respective gene locus in the K1F genome, we identified an extended open reading frame of 3195 bp, encoding a 119-kDa protein.Full-length endoNF contains the C-terminal domain conserved in all endosialidases, which may act as an intramolecular chaperone. Comparative studies carried out with endoNE and endoNF demonstrate that endosialidases are proteolytically processed, releasing the C-terminal domain. Using a mutational approach in combination with protein analytical techniques we demonstrate that (i) the C-terminal domain is a common feature of endosialidases and other tail fiber proteins; (ii) the integrity of the Cterminal domain and its presence in the nascent protein are crucial for the formation of active enzymes; (iii) proteolytic processing is not essential for enzymatic activity; and (iv) functional folding is a prerequisite for trimerization of endoNF.
Asthma is a major cause of morbidity worldwide with prevalence and severity still increasing at an alarming pace. Hallmarks of this disease include early-phase bronchoconstriction with subsequent eosinophil infiltration, symptoms that may be mimicked in vivo by the complement-derived C3a anaphylatoxin, following its interaction with the single-copy C3aR. We analyzed the pathophysiological role of the C3a anaphylatoxin in a model of experimental OVA-induced allergic asthma, using an inbred guinea pig strain phenotypically unresponsive to C3a. Molecular analysis of this defect revealed a point mutation within the coding region of the C3aR that creates a stop codon, thereby effectively inactivating gene function. When challenged by OVA inhalation, sensitized animals of this strain exhibited a bronchoconstriction decreased by ∼30% in comparison to the corresponding wild-type strain. These data suggest an important role of C3a in the pathogenesis of asthma and define a novel target for drug intervention strategies.
Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.