A cDNA clone encoding the human C3a anaphylatoxin receptor (C3aR) was isolated from a pcDNAI/Amp expression library prepared from U-937 cells which had been differentiated with dibutyryl cAMP to a macrophage-like phenotype. The cDNA clone contained an insert of 4.3 kbp and was able to confer to transfected human HEK-293 cells the capacity to bind specifically iodinated human C3a. Chinese hamster ovary cells co-transfected with this cDNA clone and a G-protein alpha subunit (G alpha-16) became functionally responsive to C3a and a C3a analog synthetic peptide, as measured by increased phosphoinositide hydrolysis. As inferred from the cDNA sequence, the clone encodes a 482-residue polypeptide with seven hydrophobic membrane-spanning helices and a high homology to the human C5a and formyl-Met-Leu-Phe receptors. Uniquely among the family of G-protein coupled receptors, the C3aR contains an exceptionally large second extracellular loop of approximately 175 residues. Northern hybridizations revealed an approximately 2.3-kb transcript as the major and an additional approximately 3.9 kb-transcript as a minor transcription product of the C3aR. The C3aR appears to be widely expressed in different lymphoid tissues, as shown by Northern hybridizations, providing evidence for a central role of the C3a anaphylatoxin in inflammatory processes.
Chimeras were generated between the human anaphylatoxin C3a and C5a receptors (C3aR and C5aR, respectively) to define the structural requirements for ligand binding and discrimination. Chimeric receptors were generated by systematically exchanging between the two receptors four receptor modules (the N terminus, transmembrane regions 1 to 4, the second extracellular loop, and transmembrane region 5 to the C terminus). The mutants were transiently expressed in HEK-293 cells (with or without G␣-16) and analyzed for cell surface expression, binding of C3a and C5a, and functional responsiveness (calcium mobilization) toward C3a, C5a, and a C3a as well as a C5a analogue peptide. The data indicate that in both anaphylatoxin receptors the transmembrane regions and the second extracellular loop act as a functional unit that is disrupted by any reciprocal exchange. N-terminal substitution confirmed the two-binding site model for the human C5aR, in which the receptor N terminus is required for high affinity binding of the native ligand but not a C5a analogue peptide. In contrast, the human C3a receptor did not require the original N terminus for high affinity binding of and activation by C3a, a result that was confirmed by N-terminal deletion mutants. This indicates a completely different binding mode of the anaphylatoxins to their corresponding receptors. The C5a analogue peptide, but not C5a, was an agonist of the C3aR. Replacement of the C3aR N terminus by the C5aR sequence, however, lead to the generation of a true hybrid C3a/C5a receptor, which bound and functionally responded to both ligands, C3a and C5a.
Despite the expression of only one type of receptor, there is great variation in the ability of different cell types to discriminate between C5a and its more stable metabolite, C5a des Arg74. The mechanism that underlies this phenomenon is not understood but presumably involves differences in the interaction with the C5a receptor. In this paper, we have analyzed the effects of a substitution mutation of the receptor (Glu199 --> Lys199) and the corresponding reciprocal mutants (Lys68 --> Glu68) of C5a, C5a des Arg74 and peptide analogues of the C-terminus of C5a on the ability of the C5a receptor to discriminate between ligands with and without Arg74. The use of these mutants indicates that the Lys68/Glu199 interaction is essential for activation of receptor by C5a des Arg74 but not for activation by intact C5a. The substitution of Asp for Arg74 of C5a [Lys68] produces a ligand with equal potency on both the wild-type and mutant receptors, suggesting that it is the C-terminal carboxyl group rather than the side chain of Arg74 that controls the responsiveness of the receptor to Lys68. In contrast, the mutation of Lys68 to Glu(68) has little effect on the ability of either C5a or C5a des Arg(74) to displace [(125)I]C5a from the receptors, indicating that binding of ligand and receptor activation are distinct but interdependent events. C5a and the truncated ligand, C5a des Arg74, appear to have different modes of interaction with the receptor and the ability of the human C5a receptor to discriminate between these ligands is at least partly dependent on an interaction with the receptor residue, Glu199.
A physical map of the chromosome of Neisseria meningitidis B1940 has been constructed by one- and two-dimensional pulsed-field gel electrophoresis techniques. Complete macrorestriction maps for the enzymes Nhel (16 sites), Sgfl (13 sites), Sfil (11 sites) and l-Ceul (4 sites), as well as a partial restriction map for the restriction enzyme Spel (15 of c. 28 sites) could be established. Altogether, 59 restriction sites were mapped on a single circular chromosome of 2.3 Mbp. By restriction endonuclease digestion and Southern hybridization of cloned genetic markers, 39 genetic loci were assigned to this map. Comparison with the metabolic maps of Neisseria gonorrhoeae MS11-N198 and FA1090 revealed a high degree of conservation in the arrangement of gene loci among these two species, although four out of 24 genetic loci are located at different chromosomal positions, indicating several genomic rearrangements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.