Cardiovascular diseases are the leading cause of death. The underlying pathophysiology is largely contributed by an overactivation of the renin-angiotensin-aldosterone-system (RAAS). Herein, angiotensin II (AngII) is a key mediator not only in blood pressure control and vascular tone regulation, but also involved in inflammation, endothelial dysfunction, atherosclerosis, hypertension and congestive heart failure. Since more than three decades suppression of AngII generation by inhibition of the angiotensin-converting enzyme (ACE) or blockade of the AngII-receptor has shown clinical benefit by reducing hypertension, atherosclerosis and other inflammation-associated cardiovascular diseases. Besides pharmaceutical ACE-inhibitors some natural peptides derived from food proteins reduce in vitro ACE activity. Several animal studies and a few human clinical trials have shown antihypertensive effects of such peptides, which might be attractive as food additives to prevent age-related RAAS activation. However, their inhibitory potency on in vitro ACE activity does not always correlate with an antihypertensive impact. While some peptides with high inhibitory activity on ACE-activity in vitro show no antihypertensive effect in vivo, other peptides with only a moderate ACE inhibitory activity in vitro cause such effects. The explanation for this conflicting phenomenon between inhibitory activity and antihypertensive effect remains unclear to date. This review shall critically address the effects of natural peptides derived from different food proteins on the cardiovascular system and the possible underlying mechanisms. A central aspect will be to point to conceptual gaps in the current understanding of the action of these peptides with respect to in vivo blood pressure lowering effects.
Background-The generation of prostaglandin E 2 (PGE 2 ) is significantly increased in acute myocardial ischemia and reperfusion. PGE 2 , in addition to other prostaglandins, protects the reperfused ischemic myocardium. It has been hypothesized that this cardioprotection is mediated by E-type prostaglandin receptors of the G i -coupled EP 3 subtype. Methods and Results-We tested this hypothesis by generating transgenic (tg) mice with cardiospecific overexpression of the EP 3 receptor. According to ligand binding, a 40-fold overexpression of the EP 3 receptor was achieved in membranes prepared from tg hearts compared with wild-type (wt) littermates. In isolated cardiomyocytes from tg mice, the forskolin-induced rise in cAMP was markedly attenuated, indicating coupling of the overexpressed EP 3 receptor to inhibitory G proteins (G i ) with constitutive receptor activity. There was no evidence for EP 3 receptor coupling to G q -mediated protein kinase C signaling. Isolated hearts from tg and wt mice were subjected to 60 minutes of no-flow ischemia and 45 minutes of reperfusion. In tg hearts, ischemic contracture was markedly delayed compared with wt hearts, and the ischemia-induced increase in left ventricular end-diastolic pressure was reduced by 55%. Creatine kinase and lactate dehydrogenase release was significantly decreased by 85% and 73%, respectively, compared with wt hearts. Conclusions-Constitutive prostaglandin EP 3 receptor signaling exerts a protective effect on cardiomyocytes, which is probably G i mediated and results in a remarkable attenuation of myocardial injury during ischemia and reperfusion.
The potential of hypoallergenic (HA) infant milk formulas containing hydrolyzed milk proteins as main constituents to inhibit angiotensin-converting enzyme (ACE) in vitro was investigated. Seven commercially available HA products designed for babies up to 4 months showed a potent inhibition of ACE in vitro, with IC 50 values ranging between 3.2 and 68.5 mg of nitrogen/L. For six samples of conventional milk-based infant formulas and three breast milk samples, no inhibition was observed. Inhibitory potential did not correlate with the degree of hydrolysis. Using reversed-phase high-pressure liquid chromatography (RP-HPLC) coupled to electrospray ionization-time of flight-mass spectrometry (ESI-TOF-MS), 15 peptides known to inhibit ACE were identified. Among them, the highly potent ACE inhibitor Ile-Trp (IC 50 = 0.7 microM) was detected and quantified for the first time in the HA samples, representing the most effective ACE-inhibiting peptide that has ever been detected in food items. The overall inhibitory potential of the HA infant milk formulas could partly be explained by Ile-Trp.
EP(3)-receptor-mediated signalling results in a significant anti-ischaemic action and activation of the pro-hypertrophic calcineurin signalling pathway, suggesting the involvement of the EP(3) subtype in both PGE(2)-mediated cardioprotection as well as cardiac hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.