The current study aimed to elucidate the role of pharmacokinetic (PK) parameters and neurotransmitter efflux in explaining variability in (±) 3, 4-methylenedioxymethamphetamine (MDMA) self-administration in rats. PK profiles of MDMA and its major metabolites were determined after the administration of 1.0 mg/kg MDMA (iv) prior to, and following, the acquisition of MDMA self-administration. Synaptic levels of 5-hydroxytryptamine (5HT) and dopamine (DA) in the nucleus accumbens were measured following administration of MDMA (1.0 and 3.0 mg/kg, iv) using in vivo microdialysis and compared for rats that acquired or failed to acquire MDMA self-administration. Effects of the 5HT neurotoxin, 5,7 dihydroxytryptamine (5, 7-DHT), on the acquisition of MDMA and cocaine self-administration were also determined. In keeping with previous findings, approximately 50% of rats failed to meet a criterion for acquisition of MDMA self-administration. The PK profiles of MDMA and its metabolites did not differ between rats that acquired or failed to acquire MDMA self-administration. MDMA produced more overflow of 5HT than DA. The MDMA-induced 5HT overflow was lower in rats that acquired MDMA self-administration compared with those that did not acquire self-administration. In contrast, MDMA-induced DA overflow was comparable for the two groups. Prior 5,7-DHT lesions reduced tissue levels of 5HT and markedly increased the percentage of rats that acquired MDMA self-administration and also decreased the latency to acquisition of cocaine self-administration. These data suggest that 5HT limits the initial sensitivity to the positively reinforcing effects of MDMA and delays the acquisition of reliable self-administration.
At certain doses, the psychoactive drug (Ϯ)3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") destroys brain serotonin axon terminals. By causing increases in plasma MDMA concentrations that exceed those predicted by the increase in dose, nonlinear pharmacokinetics has the potential to narrow the range between safe and neurotoxic doses of MDMA. The present study sought to determine whether the pharmacokinetics of MDMA in nonhuman primates are nonlinear and, if they are, to identify plasma concentrations of MDMA at which nonlinear accumulation of MDMA occurs. Four different oral doses of MDMA were tested in the same six squirrel monkeys in random order. At each dose, pharmacokinetic parameters for MDMA and its metabolites 3,4-dihydroxymethamphetamine (HHMA), 4-hydroxy-3-methoxymethamphetamine (HMMA), and 3,4-methylenedioxyamphetamine were determined. Doses were selected to be equivalent to 0.4, 0.8, 1.6, and 2.8 mg/kg doses in humans. The maximal concentration (C max ) and area under the curve (AUC) of MDMA increased nonlinearly with dose, whereas the C max and AUC of the metabolites HHMA and HMMA remained relatively constant. Nonlinear MDMA pharmacokinetics occurred at plasma MDMA concentrations of 100 to 300 ng/ml and above. The half-life (T 1/2 ) of MDMA and its metabolites also increased with dose. These results firmly establish nonlinear pharmacokinetics for MDMA in squirrel monkeys and indicate that nonlinear MDMA accumulation occurs at plasma MDMA concentrations that develop in humans taking typical doses. By raising MDMA concentrations and prolonging its action, nonlinear pharmacokinetics and T 1/2 prolongation, respectively, may influence the likelihood and severity of MDMA toxicities (including brain serotonin neurotoxicity).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.