ObjectivePredictive models that generate individualized estimates for medically relevant outcomes are playing increasing roles in clinical care and translational research. However, current methods for calibrating these estimates lose valuable information. Our goal is to develop a new calibration method to conserve as much information as possible, and would compare favorably to existing methods in terms of important performance measures: discrimination and calibration.Material and methodsWe propose an adaptive technique that utilizes individualized confidence intervals (CIs) to calibrate predictions. We evaluate this new method, adaptive calibration of predictions (ACP), in artificial and real-world medical classification problems, in terms of areas under the ROC curves, the Hosmer-Lemeshow goodness-of-fit test, mean squared error, and computational complexity.ResultsACP compared favorably to other calibration methods such as binning, Platt scaling, and isotonic regression. In several experiments, binning, isotonic regression, and Platt scaling failed to improve the calibration of a logistic regression model, whereas ACP consistently improved the calibration while maintaining the same discrimination or even improving it in some experiments. In addition, the ACP algorithm is not computationally expensive.LimitationsThe calculation of CIs for individual predictions may be cumbersome for certain predictive models. ACP is not completely parameter-free: the length of the CI employed may affect its results.ConclusionsACP can generate estimates that may be more suitable for individualized predictions than estimates that are calibrated using existing methods. Further studies are necessary to explore the limitations of ACP.
The search and validation of novel disease biomarkers requires the complementary power of professional study planning and execution, modern profiling technologies and related bioinformatics tools for data analysis and interpretation. Biomarkers have considerable impact on the care of patients and are urgently needed for advancing diagnostics, prognostics and treatment of disease. This survey article highlights emerging bioinformatics methods for biomarker discovery in clinical metabolomics, focusing on the problem of data preprocessing and consolidation, the data-driven search, verification, prioritization and biological interpretation of putative metabolic candidate biomarkers in disease. In particular, data mining tools suitable for the application to omic data gathered from most frequently-used type of experimental designs, such as case-control or longitudinal biomarker cohort studies, are reviewed and case examples of selected discovery steps are delineated in more detail. This review demonstrates that clinical bioinformatics has evolved into an essential element of biomarker discovery, translating new innovations and successes in profiling technologies and bioinformatics to clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.