Magnesium is an essential ion involved in many biochemical and physiological processes. Homeostasis of magnesium levels is tightly regulated and depends on the balance between intestinal absorption and renal excretion. However, little is known about specific proteins mediating transepithelial magnesium transport. Using a positional candidate gene approach, we identified mutations in TRPM6 (also known as CHAK2), encoding TRPM6, in autosomal-recessive hypomagnesemia with secondary hypocalcemia (HSH, OMIM 602014), previously mapped to chromosome 9q22 (ref. 3). The TRPM6 protein is a new member of the long transient receptor potential channel (TRPM) family and is highly similar to TRPM7 (also known as TRP-PLIK), a bifunctional protein that combines calcium- and magnesium-permeable cation channel properties with protein kinase activity. TRPM6 is expressed in intestinal epithelia and kidney tubules. These findings indicate that TRPM6 is crucial for magnesium homeostasis and implicate a TRPM family member in human disease.
The term Bartter syndrome encompasses a heterogeneous group of autosomal recessive salt-losing nephropathies that are caused by disturbed transepithelial sodium chloride reabsorption in the distal nephron. Mutations have been identified in the NKCC2 (Na(+)-K(+)-2Cl(-)) cotransporter and ROMK potassium channel, which cooperate in the process of apical sodium chloride uptake, and ClC-Kb chloride channels, which mediate basolateral chloride release. Recently, mutations in barttin, a protein not related to any known ion transporter or channel, were described in BSND, a variant of Bartter syndrome associated with sensorineural deafness. Here we show that barttin functions as an activator of ClC-K chloride channels. Expression of barttin together with ClC-K in Xenopus oocytes increased ClC-K current amplitude, changed ClC-K biophysical properties, and enhanced ClC-K abundance in the cell membrane. Co-immunoprecipitation revealed a direct interaction of barttin with ClC-K. We performed in situ hybridization on rat kidney slices and RT-PCR analysis on microdissected nephron segments to prove co-expression of barttin, ClC-K1 and ClC-K2 along the distal nephron. Functional analysis of BSND-associated point mutations revealed impaired ClC-K activation by barttin. The results demonstrate regulation of a CLC chloride channel by an accessory protein and indicate that ClC-K activation by barttin is required for adequate tubular salt reabsorption.
Gitelman syndrome is an inherited renal disorder characterized by impaired NaCl reabsorption in the distal convoluted tubule and secondary hypokalemic alkalosis. In clinical practice, it is distinguished from other hypokalemic tubulopathies by the presence of both hypomagnesemia and normocalcemic hypocalciuria. To date, only mutations in a single gene encoding the thiazide-sensitive NaCl cotransporter have been found as the molecular basis of GS. We describe three unrelated patients presenting with the typical laboratory findings of GS. Mutational analysis in these patients revealed no abnormality in the SLC12A3 gene. Instead, all patients were found to carry previously described mutations in the CLCNKB gene, which encodes the kidney-specific chloride channel ClC-Kb, raising the possibility of genetic heterogeneity. Review of the medical histories revealed manifestation of the disease within the first year of life in all cases. Clinical presentation included episodes of dehydration, weakness, and failure to thrive, much more suggestive of classic Bartter syndrome than of GS. The coexistence of hypomagnesemia and hypocalciuria was not present from the beginning. In the follow-up, however, a drop of both parameters below normal range was a consistent finding reflecting a transition from cBS to GS phenotype. The phenotypic overlap may indicate a physiologic cooperation of the apical thiazide-sensitive NaCl cotransporter and the basolateral chloride channel for salt reabsorption in the distal convoluted tubule. Abbreviations GS, Gitelman syndrome cBS, classic Bartter syndrome DCT, distal convoluted tubule NCCT, thiazide-sensitive NaCl cotransporter ClC-Kb, kidney-specific basolateral chloride channel TAL, thick ascending limb of Henle's loop HPS/aBS, hyperprostaglandin E/antenatal Bartter syndrome GS (MIM 263800) is an inherited renal tubular disorder characterized by impaired conservation of potassium and magnesium (1). The mode of inheritance is autosomal-recessive. The first clinical presentation is usually observed during childhood or adolescence and may include transient episodes of weakness, paresthesia, and tetany. The course of disease is generally mild and some patients even remain asymptomatic (2, 3, 4). GS patients share several biochemical findings with the more severe cBS, such as hypokalemia, metabolic alkalosis, and elevated plasma aldosterone levels (5). However, the coexistence of hypomagnesemia and hypocalciuria is considered a pathognomonic laboratory finding in GS that allows the differentiation from cBS (6).Both the observation that the electrolyte disturbances in GS resemble the effect of chronic thiazide administration (7, 8) and the results of clearance studies have pointed to a defect in the distal thiazide-sensitive sodium chloride transport (9). This hypothesis has been substantiated by the demonstration that GS is caused by mutations in the SLC12A3 gene, which encodes the NCCT of the DCT (10). Meanwhile, more than 100 mutations throughout the NCCT have been described in GS patients, sugge...
The molecular basis of inherited salt-losing tubular disorders with secondary hypokalemia has become much clearer in the past two decades. Two distinct segments along the nephron turned out to be affected, the thick ascending limb of Henle's loop and the distal convoluted tubule, accounting for two major clinical phenotypes, hyperprostaglandin E syndrome and Bartter-Gitelman syndrome. To date, inactivating mutations have been detected in six different genes encoding for proteins involved in renal transepithelial salt transport. Careful examination of genetically defined patients ("human knockouts") allowed us to determine the individual role of a specific protein and its contribution to the overall process of renal salt reabsorption. The recent generation of several genetically engineered mouse models that are deficient in orthologous genes further enabled us to compare the human phenotype with the animal models, revealing some unexpected interspecies differences. As the first line treatment in hyperprostaglandin E syndrome includes cyclooxygenase inhibitors, we propose some hypotheses about the mysterious role of PGE(2) in the etiology of renal salt-losing disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.