Two siblings (brother and sister) with renal tubular hypokalemic alkalosis underwent clinical, biochemical and molecular investigations. Although the biochemical findings were similar (including hypokalemia, metabolic alkalosis, hyperreninemia, hyperaldosteronism and normal blood pressure), the clinical findings were different: the boy, who also presented syndromic signs, developed glomerular proteinuria and renal biopsy revealed focal segmental glomerular sclerosis; the girl showed the typical signs of classic Bartter syndrome. As described in a previous paper, a heterozygous mutation (frameshift 2534delT) was demonstrated in the gene encoding the thiazide-sensitive NaCl co-transporter (SLC12A3) of the distal convoluted tubule; the second molecular analysis revealed a compound heterozygous mutation (A61D/V149E) in the CLCNKB chloride channel gene in both subjects, inherited in trans from the parents. The children were finally diagnosed as having classic Bartter syndrome. These cases represent the first report of the simultaneous presence of heterozygous and compound heterozygous mutations in the SLC12A3 and CLCNKB genes, both of which are involved in renal salt losing tubulopathies, and confirm previous observations regarding classic Bartter syndrome phenotype variability in the same kindred. Bartter syndromes are inherited disorders characterized by hypokalemia, metabolic alkalosis, hyperreninemic-hyperaldosteronism and renal salt wasting in the presence of normal blood pressure that have at least three different phenotypes: a) antenatal Bartter syndrome (aBS) [OMIM 241200 and 601678] that is characterized by polyhydramnios, premature delivery, a failure to thrive, hypercalciuria and nephrocalcinosis (1), and may be caused by genetic variants in the genes encoding the luminal Na-K-2Cl co-transporter (2) and the ROMK potassium channel (3); b) the Bartter syndrome associated with sensorineural deafness [OMIM 602522] (4), in which the defects reside in the BSND gene (5); and c) classic Bartter syndrome (cBS) [OMIM 607364] which usually onsets in the first year of life.The main findings in cBS are a failure to thrive and marked salt wasting, and there may be nephrocalcinosis and hypercalciuria (6). The causative mutations are located in the CLCNKB gene encoding the basolateral chloride channel (ClC-Kb) (6,7), which is located in the thick ascending limb of Henle's loop (TAL) and the distal tubule (DCT) (7). The characteristics of cBS are similar to those observed during combined thiazide and furosemide treatments (8).Gitelman syndrome (GS) [OMIM 263800] is a different form of inherited hypokalemic metabolic alkalosis that usually onsets during childhood but may also emerge in adult life (9). It is characterized by hypomagnesemia and hypocalciuria, muscle weakness and tetanic crises, and its phenotype is due to mutations in the gene encoding the thiazide-sensitive NaCl co-transporter (SLC12A3) expressed in the DCT (10,11). Unlike cBS, GS resembles the effect of long-term thiazide administration alone (8).The over...