Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19ARF as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF–Mdm2–p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14ARF expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.
Aberrant anaplastic lymphoma kinase (ALK) expression is a defining feature of many human cancers and was identified first in anaplastic large-cell lymphoma (ALCL), an aggressive non-Hodgkin T-cell lymphoma. Since that time, many studies have set out to identify the mechanisms used by aberrant ALK toward tumorigenesis. We have identified a distinct profile of micro-RNAs (miRNAs) that characterize ALCL; furthermore, this profile distinguishes ALK + from ALK − subtypes, and thus points toward potential mechanisms of tumorigenesis induced by aberrant ALK. Using a nucleophosmin-ALK transgenic mouse model as well as human primary ALCL tumor tissues and human ALCL-derived cell lines, we reveal a set of overlapping deregulated miRNAs that might be implicated in the development and progression of ALCL. Importantly, ALK + and ALK − ALCL could be distinguished by a distinct profile of "oncomirs": Five members of the miR-17-92 cluster were expressed more highly in ALK + ALCL, whereas miR-155 was expressed more than 10-fold higher in ALK − ALCL. Moreover, miR-101 was down-regulated in all ALCL model systems, but its forced expression attenuated cell proliferation only in ALK + and not in ALK − cell lines, perhaps suggesting different modes of ALK-dependent regulation of its target proteins. Furthermore, inhibition of mTOR, which is targeted by miR-101, led to reduced tumor growth in engrafted ALCL mouse models. In addition to future therapeutical and diagnostic applications, it will be of interest to study the physiological implications and prognostic value of the identified miRNA profiles.micro-RNA | mTOR | miR-155 | miR-101
Anaplastic Large Cell Lymphoma (ALCL) is a Non-Hodgkin lymphoma found in children and young adults with poor survival rates. ALCLs frequently carry a chromosomal translocation that results in expression of the oncoprotein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). The key molecular downstream events required for NPM-ALK triggered lymphoma growth are still not entirely clear. Here we show that the AP-1 proteins cJun and JunB promote lymphoma development and tumor dissemination in a murine NPM-ALK lymphomagenesis model via transcriptional regulation of PDGFRB. Therapeutic inhibition of PDGFRB markedly prolonged survival of NPM-ALK transgenic mice and increased the efficacy of an ALK-specific inhibitor in transplanted NPM-ALK tumors. Remarkably, inhibition of PDGFRs in a late stage patient with refractory NPM-ALK-positive ALCL resulted in complete and sustained remission within 10 days of treatment. Our data identify PDGFRB as novel cJun/JunB target that could be utilized for a highly effective therapy to cure ALCL. 3ALCLs are T-cell lymphomas 1,2 that comprise 10-20% of all Non-Hodgkin's lymphoma cases in children and 3% in adults 3 . About half of ALCL cases are positive for NPM-ALK fusion proteins caused by t(2;5)(p23;q35) translocation 4 . ALK translocations or point mutations have also been described in DLBCLs (diffuse large B-cell lymphomas) and in several nonlymphoid neoplasms [5][6][7][8] . Inhibition of ALK fusion proteins by specific compounds such as crizotinib showed promising clinical responses in ALCL and NSCLC (non-small cell lung cancer) 9,10 . However, ALK mutations conferring resistance to crizotinib have also been reported 11 .Recent studies have linked NPM-ALK expression to induction of AP-1 transcription factors JunB and cJun 12,13 . To investigate their role in NPM-ALK-driven T-cell lymphomas, we conditionally deleted cJun and/or JunB in T-cells of transgenic mice carrying the human NPM-ALK fusion-tyrosine-kinase under the control of the murine CD4-promotor 14 (CD4-NPM-ALK) (Fig. 1a). Gene deletion was confirmed by DNA genotyping (data not shown), real-time PCR, Western blotting and immunohistochemistry (IHC) (Suppl. (Fig.1b), however, inactivation of both, cJun and JunB, in CD4-NPM-ALK-CD4 ΔΔJun mice resulted in significantly prolonged survival (Fig. 1b). CD4-NPM-ALK-CD4 ΔΔJun lymphomas showed markedly reduced proliferation and significantly increased apoptosis when compared to CD4-NPM-ALK lymphomas ( Fig. 1c; Suppl. Fig. S2a,b). Consistently, (Fig. 2d) suggesting a transcriptional regulation of PDGFRB by Jun proteins. Consistently, AP-1 consensus sequences were identified within the murine PDGFRB promoter and first intron that were conserved among other species (Suppl. Fig. S3b,c) 15,16 . Moreover, analysis of ENCODE transcription factor binding tracks revealed binding of cJun and JunB to the PDGFRB intronic AP-1 site in the human K562 leukemia cell line (Suppl. Fig. S3d) 15,17 . CD4-NPM-ALK-CD4EMSA analysis of nuclear extracts from NPM-ALK lymphomas demonstrated AP-1 DNA ...
SummaryAberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK−) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK− ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.