SummaryAberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK−) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK− ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.
Our data suggest that serial measurements of CRC-associated methylation markers could be a particularly valuable tool for early response assessment in patients receiving neoCTx for CLM.
Testing of the MGMT promoter methylation status in glioblastoma is relevant for clinical decision making and research applications. Two recent and independent phase III therapy trials confirmed a prognostic and predictive value of the MGMT promoter methylation status in elderly glioblastoma patients. Several methods for MGMT promoter methylation testing have been proposed, but seem to be of limited test reliability. Therefore, and also due to feasibility reasons, translation of MGMT methylation testing into routine use has been protracted so far. Pyrosequencing after prior DNA bisulfite modification has emerged as a reliable, accurate, fast and easy-to-use method for MGMT promoter methylation testing in tumor tissues (including formalin-fixed and paraffin-embedded samples). We performed an intra- and inter-laboratory ring trial which demonstrates a high analytical performance of this technique. Thus, pyrosequencing-based assessment of MGMT promoter methylation status in glioblastoma meets the criteria of high analytical test performance and can be recommended for clinical application, provided that strict quality control is performed. Our article summarizes clinical indications, practical instructions and open issues for MGMT promoter methylation testing in glioblastoma using pyrosequencing.
Chordomas are rare mesenchymal tumors occurring exclusively in the midline from clivus to sacrum. Early tumor detection is extremely important as these tumors are resistant to chemotherapy and irradiation. Despite continuous research efforts surgical excision remains the main treatment option. Because of the often challenging anatomic location early detection is important to enable complete tumor resection and to reduce the high incidence of local recurrences. The aim of this study was to explore whether DNA methylation, a well known epigenetic marker, may play a role in chordoma development and if hypermethylation of specific CpG islands may serve as potential biomarkers correlated with SNP analyses in chordoma. The study was performed on tumor samples from ten chordoma patients. We found significant genomic instability by Affymetrix 6.0. It was interesting to see that all chordomas showed a loss of 3q26.32 (PIK 3CA) and 3q27.3 (BCL6) thus underlining the potential importance of the PI3K pathway in chordoma development. By using the AITCpG360 methylation assay we elucidated 20 genes which were hyper/hypomethylated compared to normal blood. The most promising candidates were nine hyper/hypomethylated genes C3, XIST, TACSTD2, FMR1, HIC1, RARB, DLEC1, KL, and RASSF1. In summary, we have shown that chordomas are characterized by a significant genomic instability and furthermore we demonstrated a characteristic DNA methylation pattern. These findings add new insights into chordoma development, diagnosis and potential new treatment options.
Background: Biomarkers predicting response to bevacizumab in breast cancer are still missing. Since epigenetic modifications can contribute to an aberrant regulation of angiogenesis and treatment resistance, we investigated the influence of DNA methylation patterns on bevacizumab efficacy.Methods: Genome-wide methylation profiling using the Illumina Infinium HumanMethylation450 BeadChip was performed in archival FFPE specimens of 36 patients with HER2-negative metastatic breast cancer treated with chemotherapy in combination with bevacizumab as first-line therapy (learning set). Based on objective response and progression-free survival (PFS) and considering ER expression, patients were divided in responders (R) and non-responders (NR). Significantly differentially methylated gene loci (CpGs) with a strong change in methylation levels (Δβ>0.15 or Δβ<-0.15) between R and NR were identified and further investigated in 80 bevacizumab-treated breast cancer patients (optimization set) and in 15 patients treated with chemotherapy alone (control set) using targeted deep amplicon bisulfite sequencing. Methylated gene loci were considered predictive if there was a significant association with outcome (PFS) in the optimization set but not in the control set using Spearman rank correlation, Cox regression, and logrank test.Results: Differentially methylated loci in 48 genes were identified, allowing a good separation between R and NR (odds ratio (OR) 101, p<0.0001). Methylation of at least one cytosine in 26 gene-regions was significantly associated with progression-free survival (PFS) in the optimization set, but not in the control set. Using information from the optimization set, the panel was reduced to a 9-gene signature, which could divide patients from the learning set into 2 clusters, thereby predicting response with an OR of 40 (p<0.001) and an AUC of 0.91 (LOOCV). A further restricted 3-gene methylation model showed a significant association of predicted responders with longer PFS in the learning and optimization set even in multivariate analysis with an excellent and good separation of R and NR with AUC=0.94 and AUC=0.86, respectively.Conclusion: Both a 9-gene and 3-gene methylation signature can discriminate between R and NR to a bevacizumab-based therapy in MBC and could help identify patients deriving greater benefit from bevacizumab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.