Myeloid and lymphoid neoplasms with fibroblast growth factor receptor 1 (FGFR1) abnormalities, also known as 8p11 myeloproliferative syndrome (EMS), represent rare and aggressive disorders, associated with chromosomal aberrations that lead to the fusion of FGFR1 to different partner genes. We report on a third patient with a fusion of the translocated promoter region (TPR) gene, a component of the nuclear pore complex, to FGFR1 due to a novel ins(1;8)(q25;p11p23). The fact that this fusion is a rare but recurrent event in EMS prompted us to examine the localization and transforming potential of the chimeric protein. TPR-FGFR1 localizes in the cytoplasm, although the nuclear pore localization signal of TPR is retained in the fusion protein. Furthermore, TPR-FGFR1 enables cytokine-independent survival, proliferation, and granulocytic differentiation of the interleukin-3 dependent myeloid progenitor cell line 32Dcl3, reflecting the chronic phase of EMS characterized by myeloid hyperplasia. 32Dcl3 cells transformed with the TPR-FGFR1 fusion and treated with increasing concentrations of the tyrosine kinase inhibitors ponatinib (AP24534) and infigratinib (NVP-BGJ398) displayed reduced survival and proliferation with IC50 values of 49.8 and 7.7 nM, respectively. Ponatinib, a multitargeted tyrosine kinase inhibitor, is already shown to be effective against several FGFR1-fusion kinases. Infigratinib, tested only against FGFR1OP2-FGFR1 to date, is also efficient against TPR-FGFR1. Taking its high specificity for FGFRs into account, infigratinib could be beneficial for EMS patients and should be further investigated for the treatment of myeloproliferative neoplasms with FGFR1 abnormalities.
Worldwide, colon cancer is among the most common cancer entities. Understanding the molecular background is the key to enable accurate stage determination, which is crucial to assess optimal therapy options. The search for preoperative biomarkers is ongoing. In recent years, several studies have proposed a diagnostic and prognostic role for miRNAs in cancer. Aim of this study was to evaluate miRNA expression patterns correlating with tumor stage, especially lymph node metastasis, in primary colon carcinoma tissue. Screening was accomplished using GeneChip miRNA v3.0 arrays (Thermo Fisher Scientific, Waltham, MA, USA) and validated via TaqMan qPCR assays (Thermo Fisher Scientific, Waltham, MA, USA) to investigate miRNA expressions in 168 FFPE and 83 fresh frozen colon carcinoma samples. Regarding lymph node status, analyses displayed no significantly differential miRNA expression. Interestingly, divergent expression of miR-18a-5p, miR-20a-5p, miR-21-5p, miR-152-3p and miR-1973 was detected in stage pT1. Although miRNAs might not represent reliable biomarkers regarding lymph node metastasis status, they could support risk assessment in stage T1 tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.