Life expectancies of the athletes depend on the sports they are doing. The entropic age concept, which was found successful in the previous nutrition studies, will be employed to assess the relation between the athletes’ longevity and nutrition. Depending on their caloric needs, diets are designed for each group of athletes based on the most recent guidelines while they are pursuing their careers and for the post-retirement period, and then the metabolic entropy generation was worked out for each group. Their expected lifespans, based on attaining the lifespan entropy limit, were calculated. Thermodynamic assessment appeared to be in agreement with the observations. There may be a significant improvement in the athletes’ longevity if they shift to a retirement diet after the age of 50. The expected average longevity for male athletes was 56 years for cyclists, 66 years for weightlifters, 75 years for rugby players and 92 years for golfers. If they should start consuming the retirement diet after 50 years of age, the longevity of the cyclists may increase for 7 years, and those of weightlifters, rugby players and golfers may increase for 22, 30 and 8 years, respectively.
Organisms uptake energy from their diet and maintain a highly organized structure by importing energy and exporting entropy. A fraction of the generated entropy is accumulated in their bodies, thus causing ageing. Hayflick’s entropic age concept suggests that the lifespan of organisms is determined by the amount of entropy they generate. Organisms die after reaching their lifespan entropy generation limit. On the basis of the lifespan entropy generation concept, this study suggests that an intermittent fasting diet, which means skipping some meals without increasing the calories uptake in the other courses, may increase longevity. More than 1.32 million people died in 2017 because of chronic liver diseases, and a quarter of the world’s population has non-alcoholic fatty liver disease. There are no specific dietary guidelines available for the treatment of non-alcoholic fatty liver diseases but shifting to a healthier diet is recommended as the primary treatment. A healthy obese person may generate 119.9 kJ/kg K per year of entropy and generate a total of 4796 kJ/kg K entropy in the first 40 years of life. If obese persons continue to consume the same diet, they may have 94 years of life expectancy. After age 40, Child–Pugh Score A, B, and C NAFLD patients may generate 126.2, 149.9, and 272.5 kJ/kg K year of entropy and have 92, 84, and 64 years of life expectancy, respectively. If they were to make a major recommended shift in their diet, the life expectancy of Child–Pugh Score A, B, and C patients may increase by 29, 32, and 43 years, respectively.
Effects of the pregnancy and the following lactation periods on the lifespan entropy of the women has been evaluated. In the case of singleton pregnancy, a wealthy woman may generate 1.5% and in the case of twin pregnancy 2.1% of the total lifespan entropy of a non-pregnant wealthy women. In the case of a poor woman the singleton pregnancy, may generate 1.8% and in case of the twin pregnancy 2.1% of the total lifespan entropy generated by the non-pregnant wealthy woman. Results of the diet-based thermodynamic calculations for the poor women are compared with the demographic data collected across pre-industrial Europe and a good agreement was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.