Aim Today, humanity is living through the third serious coronavirus outbreak in less than 20 years, following SARS in 2002-2003 and MERS in 2012. While the final cost on human lives and world economy remains unpredictable, the timely identification of a suitable treatment and the development of an effective vaccine remain a significant challenge and will still require time. The aim of this study is to show that the global collective effort to control the coronavirus pandemic (Covid 19) should also consider alternative therapeutic methods, and national health systems should quickly endorse the validity of proven homeopathic treatments in this war against coronavirus disease. Subject and methods With the help of mathematics, we will show that the fundamental therapeutic law on which homeopathy is founded can be proved. Results The mathematical proof of the law of similarity justifies perfectly the use of ultra-high diluted succussed solution products as major tools in the daily practices of homeopathy. Conclusion It is now time to end prejudice and adopt in this fight against Covid-19 alternative therapeutic techniques and practices that historically have proven effective in corresponding situations.
The fact that many patients all over the world use homeopathic ultra high diluted succussed medicinal products, makes very interesting an explanation about the structure of them since until now only unconfirmed hypotheses are made. The present study focuses on the still unanswered questions about what happens with the chemical composition and the physicochemical properties of these products using Hypericum Perforatum L as a representative paradigm. All samples were prepared according to manufacturing procedures described mainly in S. Hahnemann's "Organon" and were examined by SEM, XRD, FTIR, DLS micro Mastersizer, DLS nano Zetasizer, UV-Vis and TEM. Measurements of electrical conductivity and pH were effectuated by the appropriate devices. During trituration of source material in alpha-lactose monohydrate some functional chemical groups present in source material disappeared and some others new ones came in view at the end of the process. A differentiation upon physicochemical properties between the source material and final triturating product was viewed, as well as micro-nanoparticles in colloidal form in all potencies derived trituration or extraction origin were present. The findings showed that the whole preparation process leads to the creation of micro nanoparticles something that for solid origin these products are created by trituration and for extract origin products these nanoparticles exist from the beginning.
Mass Spectrometry (MS) is one of the fastest-developing methods in analytical instrumentation. As a highly sensitive, universal detector, it can identify known and unknown compounds, which can indeed be found in a minimal concentration. This review aims to highlight the significant milestones in MS applications in dentistry during recent decades. MS can be applied in three different fields of dentistry: (1) in research of dental materials and chemical agents, (2) in laboratory analysis of biospecimens, and (3) as a real-time diagnostic tool in service of oral surgery and pathology. MS applications on materials and agents may focus on numerous aspects, such as their clinical behavior, possible toxicity, or antimicrobial properties. MS is also a valuable, non-invasive tool for biomarkers’ detection in saliva and has found great application in -omics technologies as it achieves efficient structure-finding in metabolites. As metabolites are located beyond the central dogma, this technique can provide a complete understanding of cellular functions. Thus, it is possible to determine the biological profile in normal and pathological conditions, detect various oral or systematic diseases and conditions, and predict their course. Lastly, some promising advances concerning the surgical approach to potentially oral malignant or malignant disorders exist. This breakthrough method provides a comprehensive approach to dental materials research and biomarker discovery in dental and craniofacial tissues. The current availability of various ‘OMIC’ approaches paves the way for individualized dentistry and provides suggestions for clinical applications in the point-of-care hubs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.