This paper describes the hysteresis in the torque for Taylor-Couette flow in the turbulent flow regime for different shear Reynolds numbers, aspect ratios and boundary conditions. The hysteresis increases with decreasing shear Reynolds number and becomes more pronounced as the aspect ratio is increased from 22 to 88. Measurements conducted in two different Taylor-Couette set-ups depict the effect of the flow conditions at the ends of the cylinders on the flow hysteresis by showing reversed hysteresis behaviour. In addition, the flow structure in the different branches of the hysteresis loop was investigated by means of stereoscopic particle image velocimetry. The results show that the dominant flow structures differ in shape and magnitude depending on the branch of the hysteresis loop. Hence, it can be concluded that the geometry could have an effect on the hysteresis behaviour of turbulent Taylor-Couette flow, but its occurrence is related to a genuine change in the flow dynamics.
Based on experimental data acquired with particle image velocimetry, we examine turbulent boundary layers that are subjected to an abrupt change in wall roughness in the streamwise direction. Three different sandpapers (P24, P36 and P60) together with a smooth wall are used to form a number of different surface transition cases, including both R $\rightarrow$ S (where upstream surface is rough and second surface is either smooth or smoother compared with the upstream surface) and S $\rightarrow$ R (where upstream surface is smoother compared with the downstream surface; both surfaces are rough). This enables us to investigate the effect of the surface transition strength ( $M = \ln [y_{02}/y_{01}]$ , where $y_{01}$ and $y_{02}$ are the roughness lengths of the upstream and downstream surfaces, respectively) on the growth of the internal boundary layer (IBL) and the corresponding flow structure. The results show that for each surface transition group (i.e. R $\rightarrow$ S and S $\rightarrow$ R), the thickness of the IBLs is proportional to the strength of the surface transition, and that the IBLs are thicker for the S $\rightarrow$ R cases compared with their R $\rightarrow$ S counterparts for similar $|M|$ , when normalised by the initial boundary layer thickness ( $\delta _0$ ). The results also show that the growth rates of the IBLs could be represented by a power law, consistent with the previous studies. However, despite a wide range of scatter in the literature for the power-law exponent, an average value of $0.75$ (varies between $0.71$ and $0.8$ with no clear trend) is obtained in the present study considering all the surface transition cases. The pre-factor for the power-law fit, on the other hand, is found to be related to the strength of the surface transition. In addition to the variations in the velocity defect and diagnostic plots with the growth of the IBLs, sweep and ejection events appear to differ significantly (depending on the type of the step change). Two-point spatial correlations, moreover, show that the structure is more elongated in the wall-normal and streamwise directions, as the flow accelerates over the downstream surface (i.e. R $\rightarrow$ S cases). For the reverse transition cases (i.e. S $\rightarrow$ R, where the flow decelerates over the downstream rougher surface), however, the correlation coefficients shrink in size in both directions.
Abstract. This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m x 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by piezoelectric diaphragms located at 28% chord location near the mid-span of the wing. In the first part of the study, surface pressure, Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV) measurements are performed over the suction surface of the airfoil to determine the size and characteristics of the separated shear layer and the re-attachment region, i.e. the laminar separation bubble, at 2.3x105 Reynolds number at zero angle of attack and with no flow control as a baseline case. For the controlled case, CTA measurements are carried out under the same inlet conditions at various streamwise locations along the suction surface of the airfoil to investigate the effect of the synthetic jet on the boundary layer properties. During the controlled case experiments, the synthetic jet actuators are driven with a sinusoidal frequency of 1.45 kHz and 300Vp-p. Results of this study show that periodic excitation from the synthetic jet actuators eliminates the laminar separation bubble formed over the suction surface of the airfoil at 2.3x105 Reynolds number at zero angle of attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.