Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to ‘excitable’ tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy” to “blinking/waving“. The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-β1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors.
SARS-CoV-2 is a novel virus causing mainly respiratory, but also gastrointestinal symptoms. Elucidating the molecular processes underlying SARS-CoV-2 infection, and how the genetic background of an individual is responsible for the variability in clinical presentation and severity of COVID-19 is essential in understanding this disease.Cell infection by the SARS-CoV-2 virus requires binding of its Spike (S) protein to the ACE2 cell surface protein and priming of the S by the serine protease TMPRSS2. One may expect that genetic variants leading to a defective TMPRSS2 protein can affect SARS-CoV-2 ability to infect cells. We used a range of bioinformatics methods to estimate the prevalence and pathogenicity of TMPRSS2 genetic variants in the human population, and assess whether TMPRSS2 and ACE2 are co-expressed in the intestine, similarly to what is observed in lungs.We generated a 3D structural model of the TMPRSS2 extracellular domain using the prediction server Phyre and studied 378 naturally-occurring TMPRSS2 variants reported in the GnomAD database. One common variant, p.V160M (rs12329760), is predicted damaging by both SIFT and PolyPhen2 and has a MAF of 0.25. Valine 160 is a highly conserved residue within the SRCS domain. The SRCS is found in proteins involved in host defence, such as CD5 and CD6, but its role in TMPRSS2 remains unknown. 84 rare variants (53 missense and 31 leading to a prematurely truncated protein, cumulative minor allele frequency (MAF) 7.34×10−4) cause structural destabilization and possibly protein misfolding, and are also predicted damaging by SIFT and PolyPhen2 prediction tools. Moreover, we extracted gene expression data from the human protein atlas and showed that both ACE2 and TMPRSS2 are expressed in the small intestine, duodenum and colon, as well as the kidneys and gallbladder.The implications of our study are that: i. TMPRSS2 variants, in particular p.V160M with a MAF of 0.25, should be investigated as a possible marker of disease severity and prognosis in COVID-19 and ii. in vitro validation of the co-expression of TMPRSS2 and ACE2 in gastro-intestinal is warranted.
When used in combination with hormone treatment, Palbociclib prolongs progression-free survival of patients with hormone receptor positive breast cancer. Mechanistically, Palbociclib inhibits CDK4/6 activity but the basis for differing sensitivity of cancer to Palbociclib is poorly understood. A common observation in a subset of Triple Negative Breast Cancers (TNBCs) is that prolonged CDK4/6 inhibition can engage a senescence-like state where cells exit the cell cycle, whilst, remaining metabolically active. To better understand the senescence-like cell state which arises after Palbociclib treatment we used mass spectrometry to quantify the proteome, phosphoproteome, and secretome of Palbociclib-treated MDA-MB-231 TNBC cells. We observed altered levels of cell cycle regulators, immune response, and key senescence markers upon Palbociclib treatment. These datasets provide a starting point for the derivation of biomarkers which could inform the future use CDK4/6 inhibitors in TNBC subtypes and guide the development of potential combination therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.