Abstract. Data exploration and visualization systems are of great importance in the Big Data era, in which the volume and heterogeneity of available information make it difficult for humans to manually explore and analyse data. Most traditional systems operate in an offline way, limited to accessing preprocessed (static) sets of data. They also restrict themselves to dealing with small dataset sizes, which can be easily handled with conventional techniques. However, the Big Data era has realized the availability of a great amount and variety of big datasets that are dynamic in nature; most of them offer API or query endpoints for online access, or the data is received in a stream fashion. Therefore, modern systems must address the challenge of on-the-fly scalable visualizations over large dynamic sets of data, offering efficient exploration techniques, as well as mechanisms for information abstraction and summarization. Further, they must take into account different user-defined exploration scenarios and user preferences. In this work, we present a generic model for personalized multilevel exploration and analysis over large dynamic sets of numeric and temporal data. Our model is built on top of a lightweight tree-based structure which can be efficiently constructed on-the-fly for a given set of data. This tree structure aggregates input objects into a hierarchical multiscale model. We define two versions of this structure, that adopt different data organization approaches, well-suited to exploration and analysis context. In the proposed structure, statistical computations can be efficiently performed on-the-fly. Considering different exploration scenarios over large datasets, the proposed model enables efficient multilevel exploration, offering incremental construction and prefetching via user interaction, and dynamic adaptation of the hierarchies based on user preferences. A thorough theoretical analysis is presented, illustrating the efficiency of the proposed methods. The presented model is realized in a web-based prototype tool, called SynopsViz that offers multilevel visual exploration and analysis over Linked Data datasets. Finally, we provide a performance evaluation and a empirical user study employing real datasets.
Abstract. The purpose of data visualization is to offer intuitive ways for information perception and manipulation, especially for non-expert users. The Web of Data has realized the availability of a huge amount of datasets. However, the volume and heterogeneity of available information make it difficult for humans to manually explore and analyse large datasets. In this paper, we present rdf:SynopsViz, a tool for hierarchical charting and visual exploration of Linked Open Data (LOD). Hierarchical LOD exploration is based on the creation of multiple levels of hierarchically related groups of resources based on the values of one or more properties. The adopted hierarchical model provides effective information abstraction and summarization. Also, it allows efficient -on the fly-statistic computations, using aggregations over the hierarchy levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.