The environment-dependent multiexponential behavior of N-acetyltyrosinamide (NAYA) and other tyrosine derivatives is revisited, aiming for a better understanding of tyrosine as an intrinsic fluorescent probe for protein microenvironment changes during conformational changes. The effects of solvent polarity, viscosity, and temperature on the fluorescence decay of NAYA were evaluated using dioxane-water mixtures and pure solvents. Double-exponential decays were observed in dioxane-water mixtures above 70% (v/v) water concentration including pure water, for temperatures below 50 °C. However, at higher temperatures, or in dioxane-water mixtures with lower water concentrations, NAYA shows single-exponential decays. Singleexponential decays were also generally observed in pure solvents (dioxane, acetonitrile, methanol, ethanol, DMSO). The exception was the strong hydrogen-bond donor trifluorethanol, in which NAYA decays as a double exponential. The results are consistent with a solvent-modulated excited-state intramolecular electron transfer from the phenol to the amide moiety occurring in one of the three rotamers of NAYA. On the basis of a full kinetic analysis of the data, it is shown that experimental observation of double-exponential decays depends on three factors: the ground-state population of rotamers, their rates of interconversion (k r ) 4.4 × 10 8 s -1 and k r ′ ) 5.2 × 10 8 s -1 , in water at 23 °C, E r ) 4.9 ( 0.1 kcal mol -1 and E r ′) 5.2 ( 0.3 kcal mol -1 ), and the electron-transfer rate constant (k ET ) 2.0 × 10 9 s -1 , in water at 23 °C, E ET ) 1.8 ( 0.2 kcal mol -1 ). Solvent viscosity controls the interconversion rate constants while solvent polarity and hydrogen-bonding ability determines the Gibbs energy of electron transfer and the magnitude of its rate constant. Consequently, the nature of tyrosine decays in proteins is determined from a delicate balance between the interconversion and electron-transfer rate constants.
The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25 degrees C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and excited-state tyrosinate. Second, at pH 1.5, the water-exposed tyrosine of either thermally or chemically unfolded UBQ decays as a sum of two exponentials. The double-exponential decays were interpreted and analyzed in terms of excited-state intramolecular electron transfer from the phenol to the amide moiety, occurring in one of the three rotamers of tyrosine in UBQ. The values of the rate constants indicate the presence of different unfolded states and an increase in the mobility of the tyrosine residue during unfolding. Finally, from the pre-exponential coefficients of the fluorescence decays, the unfolding equilibrium constants (KU) were calculated, as a function of temperature or denaturant concentration. Despite the presence of different unfolded states, both thermal and chemical unfolding data of UBQ could be fitted to a two-state model. The thermodynamic parameters Tm = 54.6 degrees C, DeltaHTm = 56.5 kcal/mol, and DeltaCp = 890 cal/mol//K, were determined from the unfolding equilibrium constants calculated accordingly, and compared to values obtained by differential scanning calorimetry also under the assumption of a two-state transition, Tm = 57.0 degrees C, DeltaHm= 51.4 kcal/mol, and DeltaCp = 730 cal/mol//K.
Thermal folding/unfolding kinetics of wild-type ubiquitin (wt-UBQ) was studied in a wide time range, from microseconds to seconds, by combining rapid-mixing T-jump and laser T-jump with fluorescence detection (MTJ-F and LTJ-F, respectively) to monitor the fluorescence changes of Tyr-59 located on the 310-helix. The kinetics occurs exclusively in the millisecond to second time range, and the decays are strictly single exponential. From global analysis of folding and unfolding decays, the kf and ku values were determined, without use of the equilibrium constant Ku. The activation enthalpy of folding is negative (DeltaHf(#)(Tm) = -10.8 kcal/mol), but the free energy of the transition state is substantially larger than that of the unfolded state (DeltaGf(#)(Tm) = 7.6 kcal/mol RTm). Thus, wt-UBQ behaves as a two-state folder, when folding is monitored by the fluorescence of Tyr-59. The observation of kinetics on the microsecond time scale, when folding is monitored by the disruption of hydrogen bonds between beta-strands, using nonlinear infrared spectroscopy of the amide I vibrations (LTJ-DVE) [Chung, H. S.; Tokmakoff, A. Proteins: Struct., Funct., Bioinf. 2008, 72, 474-487], seems to result from the fact that MTJ-F monitors the effective unfolding (backbone exposure to water) of the thermally excited protein alone, while LTJ-DVE also monitors preliminary events (hydrogen-bond breaking) and thermal re-equilibration of the thermally excited protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.