Highlights d The molecular profile of RMC distinguishes it from other renal malignancies d RMC harbors a high number of focal chromosomal alterations d RMC has a distinct immune profile characterized by upregulation of cGAS-STING d DNA replication stress is a hallmark of RMC that can be therapeutically targeted
Highlights d Smarcb1-deficient mosaic GEM models recapitulate malignant rhabdoid tumors (MRTs) d Autophagy and UPR are essential adaptive mechanisms to proteotoxic stress in MRTs d The MYC-p53 axis regulates proteostasis in SMARCB1deficient cells d Autophagy and proteasome inhibitors achieve durable responses in MRT models
Radiotherapy is a component of the standard of care for many patients with locally advanced nonmetastatic tumors and increasingly those with oligometastatic tumors. Despite encouraging advances in local control and progression-free and overall survival outcomes, continued manifestation of tumor progression or recurrence leaves room for improvement in therapeutic efficacy. Novel combinations of radiation with immunotherapy have shown promise in improving outcomes and reducing recurrences by overcoming tumor immune tolerance and evasion mechanisms via boosting the immune system's ability to recognize and eradicate tumor cells. In this review, we discuss preclinical and early clinical evidence that radiotherapy and immunotherapy can improve treatment outcomes for locally advanced and metastatic tumors, elucidate underlying molecular mechanisms and address strategies to optimize timing and sequencing of combination therapy for maximal synergy.
Purpose:
Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed.
Methods:
We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties.
Results:
Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens.
Conclusions:
In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.