Multilevel societies, containing hierarchically nested social levels, are remarkable social structures whose origins are unclear. The social relationships of sperm whales are organized in a multilevel society with an upper level composed of clans of individuals communicating using similar patterns of clicks (codas). Using agent-based models informed by an 18-year empirical study, we show that clans are unlikely products of stochastic processes (genetic or cultural drift) but likely originate from cultural transmission via biased social learning of codas. Distinct clusters of individuals with similar acoustic repertoires, mirroring the empirical clans, emerge when whales learn preferentially the most common codas (conformism) from behaviourally similar individuals (homophily). Cultural transmission seems key in the partitioning of sperm whales into sympatric clans. These findings suggest that processes similar to those that generate complex human cultures could not only be at play in non-human societies but also create multilevel social structures in the wild.
Understanding the rat neurochemical connectome is fundamental for exploring neuronal information processing. By using advanced data mining, supervised machine learning, and network analysis, this study integrates over 5 decades of neuroanatomical investigations into a multiscale, multilayer neurochemical connectome of the rat brain. This neurochemical connectivity database (ChemNetDB) is supported by comprehensive systematically-determined receptor distribution maps. The rat connectome has an onion-type structural organization and shares a number of structural features with mesoscale connectomes of mouse and macaque. Furthermore, we demonstrate that extremal values of graph theoretical measures (e.g., degree and betweenness) are associated with evolutionary-conserved deep brain structures such as amygdala, bed nucleus of the stria terminalis, dorsal raphe, and lateral hypothalamus, which regulate primitive, yet fundamental functions, such as circadian rhythms, reward, aggression, anxiety, and fear. The ChemNetDB is a freely available resource for systems analysis of motor, sensory, emotional, and cognitive information processing.
Evolutionary 2×2 games are studied with players located on a square lattice. During the evolution the randomly chosen neighboring players try to maximize their collective income by adopting a random strategy pair with a probability dependent on the difference of their summed payoffs between the final and initial states assuming quenched strategies in their neighborhood. In the case of the anticoordination game this system behaves like an antiferromagnetic kinetic Ising model. Within a wide region of social dilemmas this dynamical rule supports the formation of similar spatial arrangement of the cooperators and defectors ensuring the optimum total payoff if the temptation to choose defection exceeds a threshold value dependent on the sucker's payoff. The comparison of the results with those achieved for pairwise imitation and myopic strategy updates has indicated the relevant advantage of pairwise collective strategy update in the maintenance of cooperation.
Abstract-Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed [1] to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial analog time-complexity on even the hardest benchmark k-SAT (k ≥ 3) formulas, but at an energy cost through exponentially driven auxiliary variables. This paper presents a novel analog hardware SAT solver, AC-SAT, implementing the CTDS via incorporating novel, analog circuit design ideas. AC-SAT is intended to be used as a co-processor and is programmable for handling different problem specifications. It is especially effective for solving hard k-SAT problem instances that are challenging for algorithms running on digital machines. Furthermore, with its modular design, AC-SAT can readily be extended to solve larger size problems, while the size of the circuit grows linearly with the product of the number of variables and number of clauses. The circuit is designed and simulated based on a 32nm CMOS technology. SPICE simulation results show speedup factors of ∼10 4 on even the hardest 3-SAT problems, when compared with a state-of-the-art SAT solver on digital computers. As an example, for hard problems with N = 50 variables and M = 212 clauses, solutions are found within from a few ns to a few hundred ns.
Many real-life optimization problems can be formulated in Boolean logic as MaxSAT, a class of problems where the task is finding Boolean assignments to variables satisfying the maximum number of logical constraints. Since MaxSAT is NP-hard, no algorithm is known to efficiently solve these problems. Here we present a continuous-time analog solver for MaxSAT and show that the scaling of the escape rate, an invariant of the solver’s dynamics, can predict the maximum number of satisfiable constraints, often well before finding the optimal assignment. Simulating the solver, we illustrate its performance on MaxSAT competition problems, then apply it to two-color Ramsey number R(m, m) problems. Although it finds colorings without monochromatic 5-cliques of complete graphs on N ≤ 42 vertices, the best coloring for N = 43 has two monochromatic 5-cliques, supporting the conjecture that R(5, 5) = 43. This approach shows the potential of continuous-time analog dynamical systems as algorithms for discrete optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.