A collaborative study was conducted on a microplate format receptor binding assay (RBA) for paralytic shellfish toxins (PST). The assay quantifies the composite PST toxicity in shellfish samples based on the ability of sample extracts to compete with 3H saxitoxin (STX) diHCl for binding to voltage- gated sodium channels in a rat brain membrane preparation. Quantification of binding can be carried out using either a microplate or traditional scintillation counter; both end points were included in this study. Nine laboratories from six countries completed the study. One laboratory analyzed the samples using the precolumn oxidation HPLC method (AOAC Method 2005.06) to determine the STX congener composition. Three laboratories performed the mouse bioassay (AOAC Method 959.08). The study focused on the ability of the assay to measure the PST toxicity of samples below, near, or slightly above the regulatory limit of 800 (μg STX diHCl equiv./kg). A total of 21 shellfish homogenates were extracted in 0.1 M HCl, and the extracts were analyzed by RBA in three assays on separate days. Samples included naturally contaminated shellfish samples of different species collected from several geographic regions, which contained varying STX congener profiles due to their exposure to different PST-producing dinoflagellate species or differences in toxin metabolism: blue mussel (Mytilus edulis) from the U.S. east and west coasts, California mussel (Mytilus californianus) from the U.S. west coast, chorito mussel (Mytilus chiliensis) from Chile, green mussel (Perna canaliculus) from New Zealand, Atlantic surf clam (Spisula solidissima) from the U.S. east coast, butter clam (Saxidomus gigantea) from the west coast of the United States, almeja clam (Venus antiqua) from Chile, and Atlantic sea scallop (Plactopecten magellanicus) from the U.S. east coast. All samples were provided as whole animal homogenates, except Atlantic sea scallop and green mussel, from which only the hepatopancreas was homogenized. Among the naturally contaminated samples, five were blind duplicates used for calculation of RSDr. The interlaboratory RSDR of the assay for 21 samples tested in nine laboratories was 33.1%, yielding a HorRat value of 2.0. Removal of results for one laboratory that reported systematically low values resulted in an average RSDR of 28.7% and average HorRat value of 1.8. Intralaboratory RSDr, based on five blind duplicate samples tested in separate assays, was 25.1%. RSDr obtained by individual laboratories ranged from 11.8 to 34.9%. Laboratories that are routine users of the assay performed better than nonroutine users, with an average RSDr of 17.1%. Recovery of STX from spiked shellfish homogenates was 88.1–93.3%. Correlation with the mouse bioassay yielded a slope of 1.64 and correlation coefficient (r2) of 0.84, while correlation with the precolumn oxidation HPLC method yielded a slope of 1.20 and an r2 of 0.92. When samples were sorted according to increasing toxin concentration (μg STX diHCl equiv./kg) as assessed by the mouse bioassay, the RBA returned no false negatives relative to the 800 μg STX diHCl equiv./kg regulatory limit for shellfish. Currently, no validated methods other than the mouse bioassay directly measure a composite toxic potency for PST in shellfish. The results of this interlaboratory study demonstrate that the RBA is suitable for the routine determination of PST in shellfish in appropriately equipped laboratories.
Chronic elevated exposure to manganese (Mn) is associated with neurocognitive and fine motor deficits in children. However, relatively little is understood about cellular responses to Mn spanning the transition between physiologic to toxic levels of exposure. Here, we investigated the specificity, sensitivity, and time course of the Golgi Phosphoprotein 4 (GPP130) response to Mn exposure in AF5 GABAergic neuronal cells, and we determined the extent to which GPP130 degradation occurs in brain cells in vivo in rats subchronically exposed to Mn. Our results show that GPP130 degradation in AF5 cells was specific to Mn, and did not occur following exposure to cobalt, copper, iron, nickel, or zinc. GPP130 degradation occurred without measurable increases in intracellular Mn levels and at Mn exposures as low as 0.54 µM. GPP130 protein was detectable by immunofluorescence in only ~15–30% of cells in striatal and cortical rat brain slices, and Mn-exposed animals exhibited a significant reduction in both the number of GPP130-positive cells, and the overall levels of GPP130 protein, demonstrating the in vivo relevance of this Mn-specific response within the primary target organ of Mn toxicity. These results provide insight into specific mechanism(s) of cellular Mn regulation and toxicity within the brain, including the selective susceptibility of cells to Mn cytotoxicity.
The receptor-binding assay (RBA) method for the detection of paralytic shellfish poisoning (PSP) toxins was evaluated for its overall performance in comparison with the mouse bioassay (MBA). An initial study to evaluate the effects of filtering shellfish extracts prior to running the RBA indicated no significant difference between filtered and unfiltered extracts on the determined saxitoxin (STX) concentrations. Next, we tested the RBA assay on 295 naturally contaminated mussel tissue samples, ranging in concentrations from 320 µg STX equiv. kg to 13,000 µg STX equiv. kg by MBA. An overall trend was observed with the RBA giving higher results (256 µg STX equiv. kg on average) than the MBA; however, at low concentrations (< 500 µg STX equiv. kg) the RBA results were marginally lower. A third study was conducted using spiked mussel tissue analysed by three independent laboratories, two of which performed the RBA and one the MBA. This multi-laboratory study again showed the RBA to give higher results than the MBA; however, it also revealed that STX determination was accurate by the RBA, unlike the MBA. To optimise the assay for efficient usage under regulatory practice, three suggestions have been made: the use of an initial screening plate to separate those samples that exceed the alert level; use of rapid PSP test kits in the field and in the laboratory for screening negative samples and for early detection of toxicity; and use of an alternate commercially available porcine membrane in place of the laboratory-prepared rat membrane homogenate. The large number of samples analysed and the diversity of the tests conducted in this study further support the RBA as an affordable rapid method for STX detection that is also free of the routine sacrifice of live animals.
Cytochrome P450 2D6 (CYP2D6) is a polymorphic enzyme responsible for metabolizing approximately 25% of all drugs. CYP2D6 is highly expressed in the brain and plays a role as the major CYP in the metabolism of numerous brain-penetrant drugs, including antipsychotics and antidepressants. CYP2D6 activity and inhibition have been associated with numerous undesirable effects in patients, such as bioactivation, drug-associated suicidality and prolongation of the QTc interval. Several in silico tools have been developed in recent years to assist safety assessment scientists in predicting the structural identity of CYP2D6-derived metabolites. The first goal of this study was to perform a comparative evaluation on the ability of four commonly used in silico tools (MetaSite, StarDrop, SMARTCyp and RS-WebPredictor) to correctly predict the CYP2D6-derived site of metabolism (SOM) for 141 compounds, including 10 derived from the Genentech small molecule library. The second goal was to evaluate if a bioactivation prediction model, based on an indicator of chemical reactivity (ELUMO-EHOMO) and electrostatic potential, could correctly predict five representative compounds known to be bioactivated by CYP2D6. Such a model would be of great utility in safety assessment since unforeseen toxicities of CYP2D6 substrates may in part be due to bioactivation mechanisms. The third and final goal was to investigate whether molecular docking, using the crystal structure of human CYP2D6, had the potential to compliment or improve the results obtained from the four SOM in silico programs.
The receptor-binding assay (RBA) method for determining saxatoxin (STX) and its numerous analogues, which cause paralytic shellfish poisoning (PSP) in humans, was evaluated in a single laboratory study. Each step of the assay preparation procedure including the performance of the multi-detector TopCount® instrument was evaluated for its contribution to method variability. The overall inherent RBA variability was determined to be 17%. Variability within the 12 detectors was observed; however, there was no reproducible pattern in detector performance. This observed variability among detectors could be attributed to other factors, such as pipetting errors. In an attempt to reduce the number of plates rejected due to excessive variability in the method's quality control parameters, a statistical approach was evaluated using either Grubbs' test or the Student's t-test for rejecting outliers in the measurement of triplicate wells. This approach improved the ratio of accepted versus rejected plates, saving cost and time for rerunning the assay. However, the potential reduction in accuracy and the lack of improvement in precision suggests caution when using this approach. The current study has recommended an alternate quality control procedure for accepting or rejecting plates in place of the criteria currently used in the published assay, or the alternative of outlier testing. The recommended procedure involves the development of control charts to monitor the critical parameters identified in the published method (QC sample, EC₅₀, slope of calibration curve), with the addition of a fourth critical parameter which is the top value (100% binding) of the calibration curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.