Little is known about the heritability of chemotherapy activity or the identity of genes that may enable the individualization of cancer chemotherapy. Although numerous genes are likely to influence chemotherapy response, current candidate gene-based pharmacogenetics approaches require a priori knowledge and the selection of a small number of candidate genes for hypothesis testing. In this study, an ex vivo familial genetics strategy using lymphoblastoid cells derived from Centre d'Etude du Polymorphisme Humain reference pedigrees was used to discover genetic determinants of chemotherapy cytotoxicity. Cytotoxicity to the mechanistically distinct chemotherapy agents 5-fluorouracil and docetaxel were shown to be heritable traits, with heritability values ranging from 0.26 to 0.65 for 5-fluorouracil and 0.21 to 0.70 for docetaxel, varying with dose. Genome-wide linkage analysis was also used to map a quantitative trait locus influencing the cellular effects of 5-fluorouracil to chromosome 9q13-q22 [logarithm of odds (LOD) ؍ 3.44], and two quantitative trait loci influencing the cellular effects of docetaxel to chromosomes 5q11-21 (LOD ؍ 2.21) and 9q13-q22 (LOD ؍ 2.73). Finally, 5-fluorouracil and docetaxel were shown to cause apoptotic cell death involving caspase-3 cleavage in Centre d'Etude du Polymorphisme Humain lymphoblastoid cells. This study identifies genomic regions likely to harbor genes important for chemotherapy cytotoxicity using genome-wide linkage analysis in human pedigrees and provides a widely applicable strategy for pharmacogenomic discovery without the requirement for a priori candidate gene selection. Significant interpatient variability in response to chemotherapy is consistently observed across patient populations (1, 2). Initial candidate gene evaluations of severe toxicity to chemotherapeutic agents have revealed specific examples of pharmacogenetically relevant single-nucleotide polymorphisms (3, 4), and previous studies of twins detailed a substantial influence of inheritance on general measures of hepatic drug metabolism (5, 6). However, little is known about the heritability of chemotherapy activity and current candidate gene strategies require the a priori selection of individual candidates from among the potentially numerous genes that may regulate the action of a drug (2). Unbiased genome-wide approaches are needed, but traditional methods for assessing genetic contribution (e.g., family studies of patients or volunteers) are obstructed for chemotherapy outcomes due to the rarity of simultaneous occurrence of a specific tumor type among family members and the unsuitability of these agents for use in normal volunteer subjects. Whole-genome association studies in clinical populations have a theoretical basis as a strategy for the discovery of markers influencing drug response (7,8); however, such studies are currently limited by sample size, the availability of relevant populations, and the expense of genotyping (9, 10).Therefore, an ex vivo familial genetics strategy involving l...
Genetic inheritance plays a significant role in the interindividual variability of drug response. The field of pharmacogenomics seeks to identify genetic factors that influence drug response, including both those that are inherited and those that arise within tumors, and use this information to improve drug therapy. Candidate gene approaches have led to clinical tests for toxicity avoidance (eg, TPMT, UGT1A1) and efficacy prediction (eg, epidermal growth factor receptor-activating mutations). However, the "right" genes are not known for most anticancer drugs. Strategies for uncovering pharmacogenomic associations vary widely from monogenic candidate gene approaches to polygenic genome-wide approaches. This review will place in context clinically relevant pharmacogenomic discovery approaches, including the relative strengths and weaknesses and the challenges inherent with achieving the goal of individualized therapy.
Previous studies have highlighted the use of phenotype generation in immortalized lymphoblastoid cells from the Centre d'Etude du Polymorphisme Humain (CEPH) pedigrees as a powerful means of discovering genes involved in complex biological and pharmacological phenotypes. However, there is no data on how representative CEPH pedigrees are of the general population of European origin for genetic variants of pharmacogenetic significance. A vast amount of data in a population of restricted applicability would be of little value. Genotype and allele frequencies of 28 variants in 15 pharmacogenetically relevant genes were analyzed in germ-line DNA from European- and African-origin blood donors, and CEPH cell lines of European origin. The results demonstrate that allele frequencies for the 28 polymorphisms are highly similar between the CEPH and the European-origin populations. However, genotype frequencies in the CEPH population did not provide a high level of prediction for the African-origin population. These data support the usefulness of the CEPH panel in pharmacogenetic discovery efforts for European-derived populations.
Although the mouse has great potential for pharmacogenomic discovery, little is known about variation in drug response or genetic variation in pharmacologically relevant genes between inbred mouse strains. We therefore assessed variation in gene sequence, mRNA expression and protein activity of thiopurine methyltransferase (TPMT) in multiple inbred mouse strains. TPMT activity was measured by high-performance liquid chromatography detection of 6-MMP produced by incubation of liver homogenates with 6-MP. Genetic variation was assessed by resequencing and single nucleotide polymorphism (SNP) genotyping using pyrosequencing technology. mRNA expression was measured by real-time polymerase chain reaction. We observed an almost five-fold variation in TPMT activity, with strains falling into distinct low and high activity groups. This pattern of TPMT activity was highly correlated with expression of TPMT mRNA among strains, and high TPMT expression is dominant in F1 hybrids. To correlate genotype with phenotype, 29 SNPs and one insertion/deletion were genotyped throughout the TPMT gene and upstream 10 kb. Only two haplotypes were observed across all 30 polymorphisms, corresponding to the low and high activity groups. These results suggest that differential mouse TPMT activity is due to variation in mRNA expression. In addition, the identified pattern of low haplotype diversity suggests that the mouse is likely to be useful for pharmacogenomic discovery by associating haplotype blocks with drug response phenotypes among inbred strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.