Fathead minnows are routinely cultured for use in aquatic toxicology studies. A new mass culture system described in the present study consisted of 6 stainless steel tanks, each containing 68 fish and 20 spawning substrates. Spawning results are compared with a previous system of 22 individual glass aquaria, which contained 16 fish and 4 spawning substrates per tank. During a 19-mo period, the new system produced an average of 4105 eggs/d, compared with an average of 2465 eggs/d with the previous system. Labor and maintenance were reduced with the new system. The stainless steel tanks eliminated aquaria glass breakage, and daily water use was reduced by 45%. Analysis of reference toxicant data from fish cultured using both systems indicated no change in the sensitivity of the test animals. Analyses of 2009 egg production data determined that a 6:1 to 7:1 female to male ratio had a significantly positive impact on egg production levels and that 6-mo-old breeding stock should be introduced to the spawning tanks in mid-spring for optimal egg production during the rest of the year. Implementing a stainless steel mass culture system significantly increased efficiency of egg production; reduced turnaround delay of mature animal availability for toxicity and molecular testing; and reduced labor time, costs, and inherent safety hazards, compared with glass aquaria systems.
Numerous methods exist for assessing the potential toxicity of sediments in aquatic systems. In this study, the results from 10-day bulk sediment toxicity test methods using Hyalella azteca and Chironomus tentans were compared to results from 96-h Pimephales promelas and Ceriodaphnia dubia renewed acute toxicity tests conducted using elutriate samples prepared from the same sediments. The goal of the study was to determine if the results from the elutriate tests were comparable to those obtained from the bulk sediment tests. Of the 25 samples analyzed, 16 were found to be toxic to at least one of the species tested, in either elutriate or bulk sediment tests. The C. tentans 10-day bulk sediment test was the most sensitive, with 12 sediment samples exhibiting toxicity to this species, whereas the H. azteca bulk sediment test and C. dubia 96-h elutriate test were the least sensitive, exhibiting toxicity in only 7 of the 25 sediments tested. The P. promelas elutriate test found 8 of the 25 sediments to be toxic. Based on the total number of sites found to show toxicity, results from testing indicate 96-h elutriate tests show a level of sensitivity comparable to 10-day bulk sediment tests in assessing toxicity quantitatively. However, the methods did not always find toxicity at the same sites, suggesting that the ability of elutriate tests to predict toxicity (quantitatively) is not statistically correlated with bulk sediment methods. This would indicate that a suite of toxicity test methods would provide the most complete measure of site condition; however, in circumstances where bulk sediment testing is not feasible, elutriate tests can provide a practical and credible alternative for toxicity assessment.
As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE), sediment samples were collected from 447 randomly selected littoral sites along the main channels of the Ohio, Missouri, and Upper Mississippi Rivers between 2004 and 2006. Toxicity of these sediment samples was measured using a 7-day Hyalella azteca survival and growth test. Sixty-five sites (14.5%) exhibited lethal toxicity, and 130 sites (29.1%) exhibited decreased growth. In the EMAP-GRE probabilistic sampling design, each sampled site had a weight associated with it that determined the length (and proportion) of the river represented by that sample point in the population. Weighted whole-river estimates indicated that of the 4721 river km sampled, sediment from 15.9 ± 3.0% of the river (752 ± 50 km) were lethally toxic, 27.4 ± 3.5% (1289 ± 57 km) were toxic by way of growth inhibition, and 40.0 ± 3.7% (1887 ± 68 km) exhibited either lethal or growth toxicity. Selected toxic samples were analyzed for 21 pesticides, 20 polychlorinated biphenyl congeners, and 6 polybrominated diphenyl ether congeners. For all of the samples tested, the concentration levels of these analytes were mostly lower than known toxicity thresholds, and neither unionized ammonia concentration nor osmotic stress (as measured by conductivity) could account for the toxicity found in sediments. The spatial pattern of sediment toxicity cannot be readily explained by urbanization or agricultural land use at the subcatchment scale. We speculate that the distribution of toxic sediment is more likely due to a combination of localized sources, including polluted tributaries, and the redistribution of contaminated sediments from upriver. The sediment toxicity results from this study will be used, in combination with other sediment, biologic, and habitat metrics and indicators collected in the EMAP-GRE study, to help interpret and assess the condition of the Ohio, Upper Mississippi, and Missouri Rivers.
Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-h Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conducted independently by two laboratories using elutriate samples prepared from the same sediment. The goal of the study was to determine if the results from the elutriate tests were comparable between two U.S. Environmental Protection Agency (USEPA) laboratories when different elutriate preparation procedures were employed by each lab. Complete agreement in site characterization was attained in 22 of the 25 samples for both bioassays amongst each lab. Of the 25 samples analyzed, 10 were found to be toxic to at least one of the species tested by either laboratory. The C. dubia elutriate tests conducted by the National Exposure Research Laboratory (NERL) indicated that 7 of the 25 sediment samples were toxic, while 8 sediment samples were characterized as such in testing conducted by USEPA Region 6 (Region 6). The P. promelas elutriate tests conducted by NERL determined 8 samples as toxic, while Region 6 tests displayed toxicity in 5 of the samples. McNemar's test of symmetry for C. dubia (S = 0.33, p = 0.5637) and P. promelas (S = 3.0, p = 0.0833) tests indicated no significant differences in designating a site toxic between NERL and Region 6 laboratories. Likewise, Cohen's kappa test revealed significant agreement between NERL and Region 6 C. dubia (K = 0.7148, p < 0.01) and P. promelas (K = 0.6939, p < 0.01) elutriate tests. The authors conclude that differences in interlaboratory elutriate preparation procedures have no bearing on the ability of either the C. dubia or P. promelas bioassay testing methods to detect toxicity while yielding similar results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.