Large area, crack-free GaInP / GaAs double junction solar cells were grown by metal organic chemical vapor deposition on Ge/ Si templates fabricated using wafer bonding and ion implantation induced layer transfer. Photovoltaic performance of these devices was comparable to those grown on bulk epi-ready Ge, demonstrating the feasibility of alternative substrates fabricated via wafer bonding and layer transfer for growth of active devices on lattice mismatched substrates.
Large area, crack-free GaInP / GaAs double junction solar cells were grown by metal organic chemical vapor deposition on Ge/ Si templates fabricated using wafer bonding and ion implantation induced layer transfer. Photovoltaic performance of these devices was comparable to those grown on bulk epi-ready Ge, demonstrating the feasibility of alternative substrates fabricated via wafer bonding and layer transfer for growth of active devices on lattice mismatched substrates.
A diffusion bonding method has been developed that enables layer transfer of single crystal lithium niobate thin films to silicon substrates. A silver film was deposited onto both the silicon and lithium niobate surfaces prior to bonding, and upon heating, a diffusion bond was formed. Transmission electron microscopy confirms the interface evolution via diffusion bonding which combines interfacial diffusion, power law creep, and growth of ͑111͒ silver grains to replace the as-bonded interface by a single polycrystalline silver film. The transferred film composition was the same as bulk lithium niobate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.