Anaplerosis, the synthesis of citric acid cycle intermediates, by pancreatic beta cell mitochondria has been proposed to be as important for insulin secretion as mitochondrial energy production. However, studies designed to lower the rate of anaplerosis in the beta cell have been inconclusive. To test the hypothesis that anaplerosis is important for insulin secretion, we lowered the activity of pyruvate carboxylase (PC), the major enzyme of anaplerosis in the beta cell. Stable transfection of short hairpin RNA was used to generate a number of INS-1 832/13-derived cell lines with various levels of PC enzyme activity that retained normal levels of control enzymes, insulin content, and glucose oxidation. Glucose-induced insulin release was decreased in proportion to the decrease in PC activity. Insulin release in response to pyruvate alone, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine, or methyl succinate plus -hydroxybutyrate was also decreased in the PC knockdown cells. Consistent with a block at PC, the most PC-deficient cells showed a metabolic crossover point at PC with increased basal and/or glucose-stimulated pyruvate plus lactate and decreased malate and citrate. In addition, in BCH plus glutamine-stimulated PC knockdown cells, pyruvate plus lactate was increased, whereas citrate was severely decreased, and malate and aspartate were slightly decreased. The incorporation of 14 C into lipid from [U-14 C]glucose was decreased in the PC knockdown cells. The results confirm the central importance of PC and anaplerosis to generate metabolites from glucose that support insulin secretion and even suggest PC is important for insulin secretion stimulated by noncarbohydrate insulin secretagogues.Glucose is the most potent physiological insulin secretagogue in the pancreatic beta cell, and it stimulates insulin secretion via its metabolism by aerobic glycolysis. Pyruvate, the terminal product of glycolysis, is metabolized in mitochondria to make ATP to power intracellular processes. However, somewhat surprisingly, in the beta cell, a large amount of glucosederived pyruvate, equal to one-half the total pyruvate entering mitochondrial metabolism, is carboxylated in the pyruvate carboxylase reaction to form oxaloacetate (1-5). The oxaloacetate can combine with pyruvate-derived acetyl-CoA to form citrate enabling the beta cell mitochondrion to increase the rate of synthesis of any citric acid cycle intermediate (anaplerosis) (6 -9). The rate of pyruvate carboxylation correlates with the glucose concentration applied to islets and is thus correlated with the rate of insulin secretion (2). The level of pyruvate carboxylase in the pancreatic islet beta cell is higher than in most body tissues (4, 10 -13) and is equal to the levels in gluconeogenic tissues, such as liver and kidney (4), which possess very high levels of the enzyme. However, the beta cell does not possess the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (11, 14, 15) or fructose-1,6-bisphosphatase (8), and this explains why it ...
Aims/hypothesis Glucose-stimulated insulin secretion is defective in patients with type 2 diabetes. We sought to acquire new information about enzymes of glucose metabolism, with an emphasis on mitochondrial enzymes, by comparing pancreatic islets of type 2 diabetes patients with those of non-diabetic controls. Methods Expression of genes encoding 13 metabolic enzymes was estimated with microarrays and activities of up to nine metabolic enzymes were measured. Results The activities of the mitochondrial enzymes, glycerol phosphate dehydrogenase, pyruvate carboxylase (PC) and succinyl-CoA:3-ketoacid-CoA transferase (SCOT) were decreased by 73%, 65% and 92%, respectively, in the diabetic compared with the non-diabetic islets. ATP citrate lyase, a cytosolic enzyme of the mitochondrial citrate pyruvate shuttle, was decreased 57%. Activities of propionyl-CoA carboxylase, NADP-isocitrate dehydrogenase, cytosolic malic enzyme, aspartate aminotransferase and malate dehydrogenase were not significantly different from those of the control. The low activities of PC and SCOT were confirmed with western blots, which showed that their protein levels were low. The correlation of relative mRNA signals with enzyme activities was good in four instances, moderate in four instances and poor in one instance. In diabetic islets, the mRNA signal of the islet cell-enriched transcription factor musculoaponeurotic fibrosarcoma oncogene homologue A, which regulates expression of islet genes, including the PC gene, was decreased to 54% of the control level. PC activity and protein levels in the non-diabetic islets were significantly lower than in islets from non-diabetic rodents. Conclusions/interpretation Low levels of certain islet metabolic enzymes, especially mitochondrial enzymes, are associated with human type 2 diabetes.
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80 -90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60 -75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20 -30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. -Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.Understanding the enzymatic makeup of human pancreatic islets is fundamental to developing strategies for designing artificial beta cells and beta cells differentiated from stem cells as treatments for type 1 diabetes, as well as modulating beta cell metabolism for the treatment of type 2 diabetes. Until recently, most of the information about normal insulin secretion came from studies of rodent islets or clonal cell lines. Although a recent study showed human pancreatic islets respond to insulin secretagogues similarly to rodent islets (1), what is still unknown is whether the use of intracellular pathways of secretagogue metabolism is the same in human islets as in rodent islets and cell lines. During the last few years, human islet preparations from human donors have become more readily available to researchers. By studying the levels of enzymes, the functional units of metabolism, the recent abundant supply of human islets has enabled our laboratory to discover clues suggesting differences in metabolic pathways between pancreatic islets of humans and rodents that have implications for better understanding normal human beta cell physiology.Anaplerosis, the biosynthesis of citric acid cycle intermediates (2), is widely believed to be important for insulin secretion (3). Pyruvate carboxylase (PC) 2 is the key anaplerotic enzyme in this process ...
We hypothesized that contrasting leucine with its non-metabolizable analog 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) might provide new information about metabolic pathways involved in insulin secretion. Both compounds stimulate insulin secretion by allosterically activating glutamate dehydrogenase, which enhances glutamate metabolism. However, we found that leucine was a stronger secretagogue in rat pancreatic islets and INS-1 cells. This suggested that leucine's metabolism contributed to its insulinotropism. Indeed, we found that leucine increased acetoacetate and was metabolized to CO(2) in pancreatic islets and increased short chain acyl-CoAs (SC-CoAs) in INS-1 cells. We then used the leucine-BCH difference to study the hypothesis that acyl groups derived from secretagogue carbon can be transferred as acetoacetate, in addition to citrate, from mitochondria to the cytosol where they can be converted to SC-CoAs. Since BCH cannot form sufficient acetoacetate from glutamate, transport of any glutamate-derived acyl groups to the cytosol in BCH-stimulated cells must proceed mainly via citrate. In ATP citrate lyase-deficient INS-1 cells, which are unable to convert citrate into cytosolic acetyl-CoA, insulin release by BCH was decreased and adding beta-hydroxybutyrate or alpha-ketoisocaproate, which increases mitochondrial acetoacetate, normalized BCH-induced insulin release. This strengthens the concept that acetoacetate-transferred acyl carbon can be converted to cytosolic SC-CoAs to stimulate insulin secretion.
Mitochondrial anaplerosis is important for insulin secretion, but only some of the products of anaplerosis are known. We discovered novel effects of mitochondrial metabolites on insulin release in INS-1 832/13 cells that suggested pathways to some of these products. Acetoacetate, beta-hydroxybutyrate, alpha-ketoisocaproate (KIC), and monomethyl succinate (MMS) alone did not stimulate insulin release. Lactate released very little insulin. When acetoacetate, beta-hydroxybutyrate, or KIC were combined with MMS, or either ketone body was combined with lactate, insulin release was stimulated 10-fold to 20-fold the controls (almost as much as with glucose). Pyruvate was a potent stimulus of insulin release. In rat pancreatic islets, beta-hydroxybutyrate potentiated MMS- and glucose-induced insulin release. The pathways of their metabolism suggest that, in addition to producing ATP, the ketone bodies and KIC supply the acetate component and MMS supplies the oxaloacetate component of citrate. In line with this, citrate was increased by beta-hydroxybutyrate plus MMS in INS-1 cells and by beta-hydroxybutyrate plus succinate in mitochondria. The two ketone bodies and KIC can also be metabolized to acetoacetyl-CoA and acetyl-CoA, which are precursors of other short-chain acyl-CoAs (SC-CoAs). Measurements of SC-CoAs by LC-MS/MS in INS-1 cells confirmed that KIC, beta-hydroxybutyrate, glucose, and pyruvate increased the levels of acetyl-CoA, acetoacetyl-CoA, succinyl-CoA, hydroxymethylglutaryl-CoA, and malonyl-CoA. MMS increased incorporation of (14)C from beta-hydroxybutyrate into citrate, acid-precipitable material, and lipids, suggesting that the two molecules complement one another to increase anaplerosis. The results suggest that, besides citrate, some of the products of anaplerosis are SC-CoAs, which may be precursors of molecules involved in insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.